avod:用于自动驾驶的3D对象检测代码

上传者: 42131541 | 上传时间: 2024-05-05 15:54:37 | 文件大小: 24.01MB | 文件类型: ZIP
聚合视图对象检测 此存储库包含用于3D对象检测的聚合视图对象检测(AVOD)网络的Python实现的公共版本。 ( ,( ,,( ,( 如果您使用此代码,请引用我们的论文: @article{ku2018joint, title={Joint 3D Proposal Generation and Object Detection from View Aggregation}, author={Ku, Jason and Mozifian, Melissa and Lee, Jungwook and Harakeh, Ali and Waslander, Steven}

文件下载

资源详情

[{"title":"( 219 个子文件 24.01MB ) avod:用于自动驾驶的3D对象检测代码","children":[{"title":"travis_install.bash <span style='color:#111;'> 640B </span>","children":null,"spread":false},{"title":"build_integral_image_lib.bash <span style='color:#111;'> 162B </span>","children":null,"spread":false},{"title":"000002.bin <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"000005.bin <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"000009.bin <span style='color:#111;'> 1.89MB </span>","children":null,"spread":false},{"title":"000007.bin <span style='color:#111;'> 1.87MB </span>","children":null,"spread":false},{"title":"000008.bin <span style='color:#111;'> 1.87MB </span>","children":null,"spread":false},{"title":"000217.bin <span style='color:#111;'> 1.86MB </span>","children":null,"spread":false},{"title":"000001.bin <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"000004.bin <span style='color:#111;'> 1.77MB </span>","children":null,"spread":false},{"title":"000000.bin <span style='color:#111;'> 1.76MB </span>","children":null,"spread":false},{"title":"000076.bin <span style='color:#111;'> 1.75MB </span>","children":null,"spread":false},{"title":"000142.bin <span style='color:#111;'> 1.74MB </span>","children":null,"spread":false},{"title":"000003.bin <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"000006.bin <span style='color:#111;'> 1.68MB </span>","children":null,"spread":false},{"title":"pyramid_cars_with_aug_example.config <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"pyramid_people_example.config <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"avod_people_example.config <span style='color:#111;'> 4.55KB </span>","children":null,"spread":false},{"title":"pyramid_cars_example.config <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"avod_cars_example.config <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false},{"title":"unittest_pipeline.config <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"unittest_model.config <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"rpn_people.config <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"rpn_pedestrians.config <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"rpn_cyclists.config <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"rpn_cars.config <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":".coveragerc <span style='color:#111;'> 54B </span>","children":null,"spread":false},{"title":"evaluate_object_3d_offline_05_iou.cpp <span style='color:#111;'> 35.46KB </span>","children":null,"spread":false},{"title":"evaluate_object_3d_offline.cpp <span style='color:#111;'> 35.43KB </span>","children":null,"spread":false},{"title":"evaluate_object_3d.cpp <span style='color:#111;'> 32.14KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 276B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 17B </span>","children":null,"spread":false},{"title":".gitmodules <span style='color:#111;'> 83B </span>","children":null,"spread":false},{"title":"mail.h <span style='color:#111;'> 811B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 403B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.60KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"000142.png <span style='color:#111;'> 888.72KB </span>","children":null,"spread":false},{"title":"000000.png <span style='color:#111;'> 872.83KB </span>","children":null,"spread":false},{"title":"000008.png <span style='color:#111;'> 865.77KB </span>","children":null,"spread":false},{"title":"000217.png <span style='color:#111;'> 836.92KB </span>","children":null,"spread":false},{"title":"000004.png <span style='color:#111;'> 826.21KB </span>","children":null,"spread":false},{"title":"000003.png <span style='color:#111;'> 815.18KB </span>","children":null,"spread":false},{"title":"000007.png <span style='color:#111;'> 795.22KB </span>","children":null,"spread":false},{"title":"000076.png <span style='color:#111;'> 781.15KB </span>","children":null,"spread":false},{"title":"000005.png <span style='color:#111;'> 760.98KB </span>","children":null,"spread":false},{"title":"000002.png <span style='color:#111;'> 749.13KB </span>","children":null,"spread":false},{"title":"000009.png <span style='color:#111;'> 734.35KB </span>","children":null,"spread":false},{"title":"000006.png <span style='color:#111;'> 731.44KB </span>","children":null,"spread":false},{"title":"000001.png <span style='color:#111;'> 718.72KB </span>","children":null,"spread":false},{"title":"model.proto <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"layers.proto <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"optimizer.proto <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"kitti_dataset.proto <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"mini_batch.proto <span style='color:#111;'> 940B </span>","children":null,"spread":false},{"title":"train.proto <span style='color:#111;'> 936B </span>","children":null,"spread":false},{"title":"kitti_utils.proto <span style='color:#111;'> 828B </span>","children":null,"spread":false},{"title":"eval.proto <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"pipeline.proto <span style='color:#111;'> 613B </span>","children":null,"spread":false},{"title":"evaluator.py <span style='color:#111;'> 48.63KB </span>","children":null,"spread":false},{"title":"rpn_model.py <span style='color:#111;'> 41.48KB </span>","children":null,"spread":false},{"title":"avod_model.py <span style='color:#111;'> 28.33KB </span>","children":null,"spread":false},{"title":"show_predictions_2d.py <span style='color:#111;'> 23.39KB </span>","children":null,"spread":false},{"title":"box_8c_encoder.py <span style='color:#111;'> 19.26KB </span>","children":null,"spread":false},{"title":"box_list_ops_test.py <span style='color:#111;'> 16.10KB </span>","children":null,"spread":false},{"title":"kitti_dataset.py <span style='color:#111;'> 15.66KB </span>","children":null,"spread":false},{"title":"box_list_ops.py <span style='color:#111;'> 15.27KB </span>","children":null,"spread":false},{"title":"box_4c_encoder.py <span style='color:#111;'> 14.83KB </span>","children":null,"spread":false},{"title":"box_8c_encoder_test.py <span style='color:#111;'> 14.63KB </span>","children":null,"spread":false},{"title":"kitti_utils.py <span style='color:#111;'> 13.31KB </span>","children":null,"spread":false},{"title":"mini_batch_preprocessor.py <span style='color:#111;'> 12.78KB </span>","children":null,"spread":false},{"title":"mini_batch_utils.py <span style='color:#111;'> 12.21KB </span>","children":null,"spread":false},{"title":"avod_loss_builder.py <span style='color:#111;'> 12.18KB </span>","children":null,"spread":false},{"title":"evaluator_utils.py <span style='color:#111;'> 11.25KB </span>","children":null,"spread":false},{"title":"anchor_projector.py <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":"fusion_fc_layers.py <span style='color:#111;'> 10.68KB </span>","children":null,"spread":false},{"title":"box_4c_encoder_test.py <span style='color:#111;'> 10.43KB </span>","children":null,"spread":false},{"title":"avod_model_test.py <span style='color:#111;'> 10.43KB </span>","children":null,"spread":false},{"title":"save_kitti_predictions.py <span style='color:#111;'> 9.94KB </span>","children":null,"spread":false},{"title":"anchor_projector_test.py <span style='color:#111;'> 9.26KB </span>","children":null,"spread":false},{"title":"bev_vgg.py <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false},{"title":"box_3d_encoder.py <span style='color:#111;'> 8.24KB </span>","children":null,"spread":false},{"title":"label_cluster_utils.py <span style='color:#111;'> 8.09KB </span>","children":null,"spread":false},{"title":"rpn_model_test.py <span style='color:#111;'> 8.06KB </span>","children":null,"spread":false},{"title":"format_checker.py <span style='color:#111;'> 8.04KB </span>","children":null,"spread":false},{"title":"bev_vgg_pyramid.py <span style='color:#111;'> 7.49KB </span>","children":null,"spread":false},{"title":"img_vgg_pyramid.py <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"losses.py <span style='color:#111;'> 7.11KB </span>","children":null,"spread":false},{"title":"box_list.py <span style='color:#111;'> 7.10KB </span>","children":null,"spread":false},{"title":"trainer_utils_test.py <span style='color:#111;'> 7.01KB </span>","children":null,"spread":false},{"title":"basic_fc_layers.py <span style='color:#111;'> 6.07KB </span>","children":null,"spread":false},{"title":"gen_mini_batches.py <span style='color:#111;'> 5.95KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false},{"title":"box_list_test.py <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false},{"title":"box_3d_encoder_test.py <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"anchor_encoder.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"kitti_aug.py <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"dataset_builder.py <span style='color:#111;'> 5.35KB </span>","children":null,"spread":false},{"title":"img_vgg.py <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明