Hands-On-Deep-Learning-Algorithms-with-Python:Packt的Python动手深度学习算法

上传者: 42126399 | 上传时间: 2024-04-10 09:45:51 | 文件大小: 127.09MB | 文件类型: ZIP
使用Python的动手深度学习算法 这是Packt发布的《 的代码库。 通过使用TensorFlow实施深度学习算法和广泛的数学知识 这本书是关于什么的? 深度学习是AI领域最受欢迎的领域之一,可让您开发各种复杂程度不同的多层模型。 本书涵盖以下激动人心的功能: 实施基础到高级的深度学习算法 掌握深度学习算法背后的数学 熟悉梯度下降及其变体,例如AMSGrad,AdaDelta,Adam和Nadam 实施循环网络,例如RNN,LSTM,GRU和seq2seq模型 了解机器如何使用CNN和胶囊网络解释图像 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 该代码将如下所示: J_plus = forward_prop(x, weights_plus) J_minus = forward_prop(x, weights_minus) 这是您需要的本

文件下载

资源详情

[{"title":"( 126 个子文件 127.09MB ) Hands-On-Deep-Learning-Algorithms-with-Python:Packt的Python动手深度学习算法","children":[{"title":"checkpoint <span style='color:#111;'> 89B </span>","children":null,"spread":false},{"title":"btc.csv <span style='color:#111;'> 79.15KB </span>","children":null,"spread":false},{"title":"model.ckpt-28070.data-00000-of-00001 <span style='color:#111;'> 21.42MB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"model.ckpt-28070.index <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"9.05 Constructing InfoGan in Tensorflow.ipynb <span style='color:#111;'> 465.10KB </span>","children":null,"spread":false},{"title":"3.06 Implementing Several Variants of Gradient Descent from Scratch.ipynb <span style='color:#111;'> 229.53KB </span>","children":null,"spread":false},{"title":"8.07 Implementing DCGAN to Generate CIFAR Images.ipynb <span style='color:#111;'> 105.12KB </span>","children":null,"spread":false},{"title":"5.06 Predicting Bitcoins price using LSTM RNN.ipynb <span style='color:#111;'> 73.64KB </span>","children":null,"spread":false},{"title":"10.13 Generating images using VAE.ipynb <span style='color:#111;'> 71.30KB </span>","children":null,"spread":false},{"title":"6.04 Implementing CNN in TensorFlow.ipynb <span style='color:#111;'> 64.84KB </span>","children":null,"spread":false},{"title":"10.07 Denoising images using Denoising Autoencoder.ipynb <span style='color:#111;'> 47.51KB </span>","children":null,"spread":false},{"title":"8.09 Building LSGAN in TensorFlow.ipynb <span style='color:#111;'> 39.03KB </span>","children":null,"spread":false},{"title":"4.06 Generating Song Lyrics Using RNN.ipynb <span style='color:#111;'> 38.00KB </span>","children":null,"spread":false},{"title":"8.05 Generating images using GAN in TensorFlow.ipynb <span style='color:#111;'> 35.94KB </span>","children":null,"spread":false},{"title":"10.03 Reconstructing MNIST images using Autoencoder.ipynb <span style='color:#111;'> 35.42KB </span>","children":null,"spread":false},{"title":"10.05 Building Convolutional Autoencoder.ipynb <span style='color:#111;'> 30.24KB </span>","children":null,"spread":false},{"title":"3.02 Performing Gradient Descent in Regression.ipynb <span style='color:#111;'> 28.38KB </span>","children":null,"spread":false},{"title":"2.05 Handwritten digits classification using TensorFlow.ipynb <span style='color:#111;'> 23.39KB </span>","children":null,"spread":false},{"title":"9.02 Generating Specific Handwritten Digit Using CGAN.ipynb <span style='color:#111;'> 22.42KB </span>","children":null,"spread":false},{"title":"1.09 Building Neural Network from scratch.ipynb <span style='color:#111;'> 22.15KB </span>","children":null,"spread":false},{"title":"2.08 Math operations in TensorFlow.ipynb <span style='color:#111;'> 20.86KB </span>","children":null,"spread":false},{"title":"9.07 Converting photos to paintings using CycleGAN.ipynb <span style='color:#111;'> 20.65KB </span>","children":null,"spread":false},{"title":"6.07 Building Capsule Networks in TensorFlow.ipynb <span style='color:#111;'> 17.55KB </span>","children":null,"spread":false},{"title":"7.07 Building word2vec model using Gensim.ipynb <span style='color:#111;'> 16.93KB </span>","children":null,"spread":false},{"title":"8.04 Demystifying GAN Loss Function.ipynb <span style='color:#111;'> 12.15KB </span>","children":null,"spread":false},{"title":"5.02 Understanding the LSTM cell.ipynb <span style='color:#111;'> 11.86KB </span>","children":null,"spread":false},{"title":"10.09 Building the Sparse Autoencoder.ipynb <span style='color:#111;'> 10.62KB </span>","children":null,"spread":false},{"title":"1.04 Exploring activation functions.ipynb <span style='color:#111;'> 10.08KB </span>","children":null,"spread":false},{"title":"7.10 Finding similar documents using Doc2Vec.ipynb <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"3.01 Demystifying Gradient Descent.ipynb <span style='color:#111;'> 7.35KB </span>","children":null,"spread":false},{"title":"7.08 Visualizing Word Embeddings in TensorBoard.ipynb <span style='color:#111;'> 7.14KB </span>","children":null,"spread":false},{"title":"2.10 MNIST digits classification in TensorFlow 2.0.ipynb <span style='color:#111;'> 6.84KB </span>","children":null,"spread":false},{"title":"1.01 What is Deep Learning_.ipynb <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"4.05 Vanishing and Exploding Gradients.ipynb <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"7.02 Continuous Bag of words.ipynb <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"1.02 Biological and Artificial Neurons.ipynb <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"4.01 Hola Recurrent Neural Networks.ipynb <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"5.12 BiDirectional RNN.ipynb <span style='color:#111;'> 4.01KB </span>","children":null,"spread":false},{"title":"1.03 ANN and its layers.ipynb <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"11.01 What is few-shot learning_.ipynb <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"7.01 Understanding Word2vec Model.ipynb <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"10.11 Implementing Contractive Autoencoders.ipynb <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"2.11 Should we use Keras or TensorFlow_.ipynb <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"11.07 What's Next_.ipynb <span style='color:#111;'> 966B </span>","children":null,"spread":false},{"title":"4.jpg <span style='color:#111;'> 18.07KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.90KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 785B </span>","children":null,"spread":false},{"title":"model.ckpt-28070.meta <span style='color:#111;'> 21.42MB </span>","children":null,"spread":false},{"title":"events.out.tfevents.1559122983.ml-dev <span style='color:#111;'> 119.47KB </span>","children":null,"spread":false},{"title":"word2vec.model <span style='color:#111;'> 23.23MB </span>","children":null,"spread":false},{"title":"doc2vec.model <span style='color:#111;'> 12.43MB </span>","children":null,"spread":false},{"title":"projector_config.pbtxt <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"book_cover.png <span style='color:#111;'> 669.65KB </span>","children":null,"spread":false},{"title":"6.png <span style='color:#111;'> 308.02KB </span>","children":null,"spread":false},{"title":"7.png <span style='color:#111;'> 306.63KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 217.40KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 154.87KB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 149.31KB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 145.18KB </span>","children":null,"spread":false},{"title":"10.png <span style='color:#111;'> 135.98KB </span>","children":null,"spread":false},{"title":"9.png <span style='color:#111;'> 80.38KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 51.07KB </span>","children":null,"spread":false},{"title":"8.png <span style='color:#111;'> 48.43KB </span>","children":null,"spread":false},{"title":"7.png <span style='color:#111;'> 45.70KB </span>","children":null,"spread":false},{"title":"5.png <span style='color:#111;'> 41.78KB </span>","children":null,"spread":false},{"title":"8.png <span style='color:#111;'> 40.06KB </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 39.33KB </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 32.85KB </span>","children":null,"spread":false},{"title":"5.png <span style='color:#111;'> 31.52KB </span>","children":null,"spread":false},{"title":"5.png <span style='color:#111;'> 30.87KB </span>","children":null,"spread":false},{"title":"3_1.png <span style='color:#111;'> 29.73KB </span>","children":null,"spread":false},{"title":"4.png <span style='color:#111;'> 25.41KB </span>","children":null,"spread":false},{"title":"6.png <span style='color:#111;'> 24.79KB </span>","children":null,"spread":false},{"title":"4.png <span style='color:#111;'> 21.54KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明