机器学习实战代码.zip

上传者: 51320133 | 上传时间: 2024-12-23 15:19:52 | 文件大小: 2.1MB | 文件类型: ZIP
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径。 随着统计学的发展,统计学习在机器学习中占据了重要地位,支持向量机(SVM)、决策树和随机森林等算法的提出和发展,使得机器学习能够更好地处理分类、回归和聚类等任务。进入21世纪,深度学习成为机器学习领域的重要突破,采用多层神经网络模型,通过大量数据和强大的计算能力来训练模型,在计算机视觉、自然语言处理和语音识别等领域取得了显著的成果。 机器学习算法在各个领域都有广泛的应用,包括医疗保健、金融、零售和电子商务、智能交通、生产制造等。例如,在医疗领域,机器学习技术可以帮助医生识别医疗影像,辅助诊断疾病,预测病情发展趋势,并为患者提供个性化的治疗方案。在金融领域,机器学习模型可以分析金融数据,识别潜在风险,预测股票市场的走势等。 未来,随着传感器技术和计算能力的提升,机器学习将在自动驾驶、智能家居等领域发挥更大的作用。同时,随着物联网技术的普及,机器学习将助力智能家居设备实现更加智能化和个性化的功能。在工业制造领域,机器学习也将实现广泛应用,如智能制造、工艺优化和质量控制等。 总之,机器学习是一门具有广阔应用前景和深远影响的学科,它将持续推动人工智能技术的发展,为人类社会的进步做出重要贡献。

文件下载

资源详情

[{"title":"( 148 个子文件 2.1MB ) 机器学习实战代码.zip","children":[{"title":"secom.data <span style='color:#111;'> 5.14MB </span>","children":null,"spread":false},{"title":"dating.iml <span style='color:#111;'> 443B </span>","children":null,"spread":false},{"title":"PCA.iml <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"AdaBoost.iml <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"树回归.iml <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"线性回归.iml <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"支持向量机.iml <span style='color:#111;'> 398B </span>","children":null,"spread":false},{"title":"k-means.iml <span style='color:#111;'> 398B </span>","children":null,"spread":false},{"title":"SVD.iml <span style='color:#111;'> 398B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 244B </span>","children":null,"spread":false},{"title":"adaboost.py <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false},{"title":"logRegres.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"trees.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"svmMLiA.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"treePlotter.py <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false},{"title":"KNN.py <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"bayes.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"bayes.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"regTrees.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"logRegres.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"svdRec.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"kMeans.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"regression.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 959B </span>","children":null,"spread":false},{"title":"pca.py <span style='color:#111;'> 920B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 843B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 825B </span>","children":null,"spread":false},{"title":"KNN.py <span style='color:#111;'> 652B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 637B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 436B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 429B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 283B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 282B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 266B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 256B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 212B </span>","children":null,"spread":false},{"title":"simple.py <span style='color:#111;'> 68B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 45B </span>","children":null,"spread":false},{"title":"adaboost.pyc <span style='color:#111;'> 4.95KB </span>","children":null,"spread":false},{"title":"trees.pyc <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"adaboost.cpython-37.pyc <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"treePlotter.pyc <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"logRegres.cpython-37.pyc <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"KNN.pyc <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"bayes.pyc <span style='color:#111;'> 3.24KB </span>","children":null,"spread":false},{"title":"svmMLiA.pyc <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"bayes.pyc <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"regTrees.pyc <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"logRegres.pyc <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"KNN.cpython-37.pyc <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"regression.pyc <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"kMeans.pyc <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"regTrees.cpython-37.pyc <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"regression.cpython-37.pyc <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"pca.pyc <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"pca.cpython-37.pyc <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"KNN.pyc <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"abalone.txt <span style='color:#111;'> 188.65KB </span>","children":null,"spread":false},{"title":"horseColicTraining2.txt <span style='color:#111;'> 59.06KB </span>","children":null,"spread":false},{"title":"horseColicTraining.txt <span style='color:#111;'> 58.94KB </span>","children":null,"spread":false},{"title":"datingTestSet.txt <span style='color:#111;'> 33.91KB </span>","children":null,"spread":false},{"title":"datingTestSet2.txt <span style='color:#111;'> 25.46KB </span>","children":null,"spread":false},{"title":"testSet.txt <span style='color:#111;'> 18.04KB </span>","children":null,"spread":false},{"title":"horseColicTest2.txt <span style='color:#111;'> 13.23KB </span>","children":null,"spread":false},{"title":"ex0.txt <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"horseColicTest.txt <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false},{"title":"ex00.txt <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"testSet.txt <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"testSet.txt <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"testSet.txt <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"6.txt <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"lenses.txt <span style='color:#111;'> 771B </span>","children":null,"spread":false},{"title":"8.txt <span style='color:#111;'> 634B </span>","children":null,"spread":false},{"title":"23.txt <span style='color:#111;'> 601B </span>","children":null,"spread":false},{"title":"15.txt <span style='color:#111;'> 522B </span>","children":null,"spread":false},{"title":"17.txt <span style='color:#111;'> 454B </span>","children":null,"spread":false},{"title":"11.txt <span style='color:#111;'> 402B </span>","children":null,"spread":false},{"title":"3.txt <span style='color:#111;'> 402B </span>","children":null,"spread":false},{"title":"19.txt <span style='color:#111;'> 386B </span>","children":null,"spread":false},{"title":"3.txt <span style='color:#111;'> 364B </span>","children":null,"spread":false},{"title":"20.txt <span style='color:#111;'> 351B </span>","children":null,"spread":false},{"title":"22.txt <span style='color:#111;'> 351B </span>","children":null,"spread":false},{"title":"15.txt <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"16.txt <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"24.txt <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"23.txt <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"8.txt <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"22.txt <span style='color:#111;'> 324B </span>","children":null,"spread":false},{"title":"2.txt <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"25.txt <span style='color:#111;'> 258B </span>","children":null,"spread":false},{"title":"18.txt <span style='color:#111;'> 253B </span>","children":null,"spread":false},{"title":"13.txt <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"6.txt <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"17.txt <span style='color:#111;'> 241B </span>","children":null,"spread":false},{"title":"1.txt <span style='color:#111;'> 235B </span>","children":null,"spread":false},{"title":"5.txt <span style='color:#111;'> 235B </span>","children":null,"spread":false},{"title":"2.txt <span style='color:#111;'> 232B </span>","children":null,"spread":false},{"title":"21.txt <span style='color:#111;'> 229B </span>","children":null,"spread":false},{"title":"4.txt <span style='color:#111;'> 226B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明