可用于UnityVR开发,3D游戏开发,高清天空盒子Skybox素材,游戏环境背景素材,无水印。 让你身临其境的天空盒子,各类题材丰富,都是辛苦搜罗所得的高清exr格式,可以直接用于Unity开发,特别是VR游戏的开发。 内景、外景、城市、乡间、日出,夜晚,欧式宫殿,中式园林,应有尽有,可以在我的下载频道选择需要的下载。 注意,由于是高清,所以体积较大(大的可以达到500M),请下载前预留合适的空间。 使用方法: 1-导入Unity后将图片的Shape转换成cube形式, 2-创建空Material,并转换成Cube/skybox形式, 3-将图片拖入新建的SkyboxMaterial, 4-用刚创建的Material代替项目中原本的系统默认Skybox
2022-05-08 17:05:58 279.98MB vr unity skybox 天空盒子
KeypointNet 完整的数据集现在可用! KeypointNet是一个大规模且多样化的3D关键点数据集,通过利用基于ShapeNet模型的众多人工注释,包含来自16个对象类别的83,231个关键点和8,329个3D模型。 我们的论文可在上获得并被CVPR 2020接受。您可以在以下位置浏览我们的数据集 。 消息! 现在发布了两个有趣的无监督关键点检测器: (无序但SE(3)不变)和 (非SE(3)不变但有序)! 变更记录 有关更新的数据集信息,请参阅 关键点数据 数据集可以从或下载。 带注释的JSON数据放置在注释下。 此外,我们还提供了下PCD的每个ShapeNet模型采样点云(2048点)。 我们已经为飞机(1022型号),浴缸(492型号),床(146型号),瓶子(380型号),瓶盖(38型号),汽车(1002型号),椅子(999型号),吉他等标签进行了处理和清洗。
2022-05-06 15:36:38 1.54MB dataset point-clouds keypoint-detection keypointnet
1
TEASER ++:快速且可认证的3D注册 TEASER ++是使用C ++编写的具有Python和MATLAB绑定的快速且可靠的点云注册库。 关于 左:由生成的对应(绿线和红线分别表示根据地面真实情况的离群值和离群值对应)。右:由TEASER ++估算的对齐方式(绿色点表示由TEASER ++找到的像素)。 TEASER ++可以解决3D中两点云之间的刚体转换问题。即使输入的对应关系中有大量异常值,它也能很好地执行。有关概念的简短介绍,请我们的。有关更多信息,请参阅我们的论文: , ,和 , “TEASER:快速认证的点云登记”。 [cs,math],2020年1月。( ) 和 ,“具有极高异常值率的鲁棒配准的多项式时间解决方案”,《机器人技术:科学与系统》(RSS),2019年。( ) 如果您发现此库有用或在您的项目中使用它,请引用: @article { Yang20
2022-03-31 10:45:01 30.32MB robotics optimization slam point-clouds
1
体积雾云 在Unity中随意渲染体积渲染。
2022-03-28 17:34:01 54KB C#
1
The dataset contains 10,000 satellite images and almost 50,000 mesoscale cloud clusters. 这个数据集包含10,000个卫星图像以及近50,000个中尺度云簇 Understanding Clouds from Satellite Images_datasets.txt
2022-03-04 08:46:16 467B 数据集
1
2021-12-22 14:46:04 124KB Wordpress Clouds模板
1
使用Katz投影将点云投影到2D虚拟图像中。然后我们使用预先训练的卷积神经网络对图像进行语义分割。为了获得语义分割的点云,我们将分数从分段投影回点云。我们的方法是在semantic3D数据集上进行评估的。我们发现我们的方法与最先进的技术相当,没有对Semantic3D数据集进行任何微调。
2021-12-21 13:23:53 20.05MB 点云 深度学习 语义分割
1
DeepGCN:GCN可以像CNN一样深入吗? 在这项工作中,我们提出了成功训练非常深的GCN的新方法。 我们从CNN借用概念,主要是残差/密集连接和膨胀卷积,然后将其适应GCN架构。 通过广泛的实验,我们证明了这些深层GCN框架的积极作用。 概述 我们进行了广泛的实验,以展示不同的组件(#Layers,#Filters,#Nearest Neighbors,Dilation等)如何影响DeepGCNs 。 我们还提供了针对不同类型的深层GCN(MRGCN,EdgeConv,GraphSage和GIN)的消融研究。 进一步的信息和详细信息,请联系和 。 要求 (仅用于可视化) (仅用于可视化) conda环境 为了设置运行所有必要依赖项的conda环境, conda env create -f environment.yml 入门 您将在文件夹中找到有关如何使用我们的代码对3
1
kaggle了解云 Kaggle从卫星图像挑战中了解云中第一名解决方案的代码。 要阅读该解决方案的简要说明,请参阅 复制提交 要在不进行重新培训的情况下复制我的提交内容,请执行以下步骤: 运行bash reproduce.sh 安装 所有要求都应在requirements.txt中进行详细说明。 强烈建议使用Anaconda。 conda create -n cloud python=3.6 conda activate cloud pip install -r requirements.txt 准备数据集 下载数据集 下载train_images.zip和test_images.zip并将其解压缩到数据目录。 $ kaggle competitions download -c understanding_cloud_organization $ unzip understandin
2021-11-15 10:11:10 73KB Python
1
国防科技大学郭裕兰老师课题组新出的这篇论文对近几年点云深度学习方法进行了全面综述,是第一篇全面涵盖多个重要点云相关任务的深度学习方法的综述论文,包括三维形状分类、三维目标检测与跟踪、三维点云分割等,并对点云深度学习的机制和策略进行全面的归纳和解读,帮助读者更好地了解当前的研究现状和思路。
2021-10-10 10:28:33 1.41MB 3D point_cloud
1