使用梯度下降的方法进行逻辑回归实战: 问题说明: 这里将建立一个逻辑回归模型来预测一个学生是否被大学录取。 假设你是一个大学的管理员,你想根据两次考试的结果来决定每个申请人的录取机会,你有以前的申请人的历史数据。可以用历史数据作为逻辑回归的训练集。对于每一个样本,有两次考试的申请人的成绩和录取决定。建立一个分类模型,根据考试成绩估计入学概率。 数据链接: 链接:https://pan.baidu.com/s/1-pjwe1ogk30WpzN4Qg1NZA 密码:wqmt 完整代码实现如下: import numpy as np import pandas as pd import matpl
1
文章目录案例简介数据可视化建立分类器sigmoid函数:映射到概率的函数model 函数: 返回预测结果值cost : 根据参数计算损失gradient : 计算每个参数的梯度方向descent : 进行参数更新精度 案例简介 参考资料 逻辑回归函数 Python数据分析与机器学习-逻辑回归案例分析 案例内容 现在有一份学生两次考试的结果的数据 根据数据建立一个逻辑回归模型来预测一个学生的入学概率。 数据内容:两个考试的申请人的分数和录取决定。 # 导入相应的包 import numpy as np import pandas as pd import matplotlib as mpl im
2023-03-10 19:42:31 268KB 回归 梯度 梯度下降
1
这是 OLS 批量梯度下降算法的简单实现。 在文件的末尾,我们使用矩阵形式的标准 OLS 来检查梯度下降算法是否提供了合理的结果。 如果算法不收敛并且梯度下降值与普通 OLS 值“太远”,请更改学习率、初始猜测或算法中的其他内容。
2023-03-08 19:44:18 3KB matlab
1
利用最速梯度下降法求解: 函数接口:[xstar,fxstar,iter] = SteepDescent(f_name,x0,eps) 其中xstar为最优解,fxstar为最优函数值,iter为迭代次数。 f_name为目标函数文件,可以用feval调用计算函数值及梯度; x0为初始值,可取[1,1]‘,eps=1e-3,利用0.618法搜索步长。 如:[xstar,fxstar,iter] = SteepDescent(@Myexam1,[1,1]',1e-3) function [f,g]=Myexam1(x) %%%%调用[f,g] = feval(f_name,xk); f=x(1)^2+2*x(2)^2; g=[2*x(1);4*x(2)]; end 可直接运行!!
2023-02-21 21:04:05 2KB 运筹学 matlab
1
CDSGD 这是基于共识的分布式随机梯度下降的占位符存储库。 有关更多详细信息,请参阅论文:姜占宏,阿迪亚·巴鲁,金美·黑德,苏米克·萨卡 用法 python main.py -m CNN -b 512 -ep 200 -d cifar10 -n 5 -cp 1 -g 3 CDSGD -m是模型名称,它是CNN,FCN和Big_CNN; -b批处理大小; -ep是时代; -d是数据集; -n是否。 代理商; -cp是通信周期; -g是您要使用的GPU。 假设您有4个GPU,然后选择要使用的GPU。 然后终于要进行的实验了。 SGD,CDSGD,EASGD,CDMSGD,MSGD,FASGD等 执照 BSD
2023-01-24 11:33:17 13KB Python
1
java笔试题算法超梯度下降 这是 ICLR 2018 论文的代码。 一个版本也在计划中,稍后会出现在这个 repo 中。 什么是“超梯度”? 在基于梯度的优化中,通过使用其关于模型参数的导数(梯度)来优化目标函数。 除了这个基本梯度之外,超梯度是相同目标函数相对于优化过程的超参数(例如学习率、动量或正则化参数)的导数。 可以有多种类型的超梯度,在这项工作中,我们对与标量学习率相关的超梯度感兴趣。 安装 pip install git+https://github.com/gbaydin/hypergradient-descent.git 我如何将它用于我的工作? 我们正在为 PyTorch 提供超梯度版本的 SGD(有或没有动量)和 Adam 优化器的现成实现。 这些符合torch.optim API,可用作代码中的直接替代品。 只需从这个 repo 中获取sgd_hd.py和adam_hd.py文件并像这样导入它们 from hypergrad import SGDHD , AdamHD ... optimizer = optim . AdamHD ( model . parame
2023-01-23 16:24:37 17.83MB 系统开源
1
梯度下降法原理与python实现
2023-01-18 00:19:11 1.25MB python实现
1
梯度下降法介绍梯度下降法介绍梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法
1
雅各比迭代matlab代码新元 随机异步随机梯度下降 s文件夹包含随机的Jacobi原型代码和用于生成算法收敛图的脚本。 阅读文件SETTING-UP,以获取有关下载哪些库,在何处找到代码以及如何构建和运行所有内容的说明。 文件matrices / matrix_list.txt包含代码在其上运行的矩阵的列表。 编辑文件以更改列表(如果需要),然后运行 cd矩阵./download.sh 下载所有矩阵并为其生成右侧向量。 要在所有矩阵上运行该算法,请执行以下操作。 cd数据./produce_data.sh 这会将算法的输出保存在data /文件中。 运行该算法的线程数在data / produce_data.sh中定义。 您可以使用的data / produce_data.sh中的另一个变量是MIS_PER_EPOCH。 它定义为在评估剩余范数之间进行的主要迭代(n步序列)的次数。 增加它会减少每个时期的启动/关闭开销,但也会降低收敛图的分辨率。 使用脚本data / make_plot.m生成图。 从Matlab运行: cd data; MIS_PER_EPOCH = 1; mak
2023-01-09 21:16:58 121KB 系统开源
1
T3C_Toolbox_LYuan 该存储库提供了两种张量完成算法:张量训练加权优化(TTWOPT)和张量训练随机梯度下降(TTSGD),它们基于张量训练分解和基于梯度的优化方法。 [1]袁隆浩,赵启斌和曹建庭。 “通过张量-序列分解完成缺少条目的高阶张量数据。” 国际神经信息处理会议。 斯普林格(Cham),2017年 [2]袁龙浩,赵启斌和曹建庭。 “在张量-训练格式下通过基于梯度的优化完成高维张量。” arXiv预印本arXiv:1804.01983(2018)。
2023-01-03 17:11:03 2.09MB HTML
1