适用于Unity的Polygon2D编辑器 使用PolygonCollider2D对撞器为游戏对象生成网格,让您通过“编辑对撞器”按钮在Unity版本中绘制多边形平台。 只需将脚本拖到平台GameObject上,就可以了。 该脚本使用类。 安装/入门 只需并将其放置在Unity项目资产的某个位置即可。 所需的所有内容都包含在一个文件中。 通过将组件拖动到GameObject上或使用“添加组件”对话框来使用该组件。 如果不存在,它将自动添加Polygon Collider 2D组件。 在“多边形对撞机2D组件”中,单击“编辑对撞机”按钮以调整对撞机的形状。 网格物体会自动调整自身以填充碰
2022-02-13 23:51:58 173KB unity tool collider mesh-generation
1
2020高中物理选修3-5同步第十六章1实验:探究碰撞中的不变量.pdf
2022-02-10 14:04:46 276KB 资料
基于OCC的数控机床防碰撞系统研究.kdh open CASCADE
2022-02-07 15:01:06 4MB Open CASCADE 数控机床 防碰撞系统
1
FANUC机器人如何启用附加轴的碰撞检测功能
2022-01-26 09:02:55 51KB FANUC机器人 附加轴 碰撞检测功能
JS+CSS实现带有碰撞缓冲效果的竖向导航条代码.docx
2022-01-19 19:06:37 16KB 开发
NFP算法FOR PCB。多边形碰撞,面积最小。PCB拼版和拼中,多边形碰撞的算法。根据NFP论文写得。VERSION ONE。
2022-01-18 09:52:44 14.35MB NFP C++
1
全域哈希原理与实现1-hash哈希介绍2-Universal hashing全域哈希法3-构造一个全域哈希H\mathcal{H}H4-python实现 1-hash哈希介绍 hash函数y=h(k)y=h(k)y=h(k),把任意长度的输入kkk通过散列算法hhh变换成固定长度的输出yyy,该输出就是散列值1。一种常见的hash函数是y=H(k)=(a⋅k+b)mod  my=H(k)=(a\cdot k+b) \mod my=H(k)=(a⋅k+b)modm,mmm一般取素数。 设hash函数的定义域为KKK,值域为YYY,一般来说,∣K∣>∣Y∣|K|>|Y|∣K∣>∣Y∣,这样hash
2022-01-14 16:23:27 160KB al AS ash
1
用于计算直线(最小长度)渗透的 2D 和 3D 方阵。 还显示了碰撞计数。 渗流可用于凝聚态物理中的晶格结构输运计算。 还有网络理论、通信、疾病传播和失败率。 也可以看看en.wikipedia.org/wiki/Percolation 和mathworld.wolfram.com/PercolationTheory.html 这个实现是不完整的,对于标准的渗透阈值计算来说是不够的,因为没有使用通常的渗透定义。 有关渗透的更多相关实现,请参阅https://github.com/topics/percolation 和https://rosettacode.org/wiki/Percolation/Site_percolation
2022-01-13 09:20:46 4KB matlab
1
matlab行检测人的程序的源码马恒达_ADAS_系统 ROS控制车辆的前向预警碰撞系统和车道辅助在MATLAB中的实现 抽象的 以下论文讨论了父项目的一部分,重点是为无人驾驶汽车开发自主控制器。 主要目标是设计一个具有车道辅助和前方碰撞警告系统的自动驾驶系统,该系统可以在 IIT 德里道路上成功运行。 设计算法,使用 MATLAB 上预先存在的库,然后将其与 ROS 集成以进行实时通信。 Gazebo 模拟系统、视频源,甚至实时视频源都被用于测试一些算法和设计模型的定性比较。 主要目标是利用 MATLAB 的功能并使用其内置库、模型和算法来实现所需的输出和控制信号。 概述 对于本本科论文,目标是设计一种基于视觉的辅助系统,能够自主控制 e2o 汽车,将立体摄像头作为全局传感器。 我们的想法是使用 Mathworks 开发的技术并根据印度道路对其进行建模,在我们的实验中,我们在 IIT 德里校园道路上测试了该算法。 最初,重点是理解和使用 MATLAB 视觉工具箱,但后来,方法多样化。 这些算法在模拟和真实世界的视频上进行了测试。 使用 ROS-MATLAB 桥接算法生成的输出被中继以
2022-01-12 10:27:08 273MB 系统开源
1
1 Introduction 1.1 Contents Overview 1.2 About the Code 2 Collision Detection Design Issues 2.1 Collision Algorithm Design Factors 2.2 Application Domain Representation 2.2.1 Object Representations 2.2.2 Collision versus Rendering Geometry 2.2.3 Collision Algorithm Specialization 2.3 Different Types of Queries 2.4 Environment Simulation Parameters 2.4.1 Number of Objects 2.4.2 Sequential versus Simultaneous Motion 2.4.3 Discrete versus Continuous Motion 2.5 Performance 2.5.1 Optimization Overview 2.6 Robustness 2.7 Ease of Implementation and Use 2.7.1 Debugging a Collision Detection System 2.8 Summary 3 A Math and Geometry Primer 3.1 Matrices 3.1.1 Matrix Arithmetic 3.1.2 Algebraic Identities Involving Matrices 3.1.3 Determinants 3.1.4 Solving Small Systems of Linear Equation using Cramer's Rule 3.1.5 Matrix Inverses for 2x2 and 3x3 Matrices 3.1.6 Determinant Predicates 3.1.6.1 ORIENT2D(A, B, C) 3.1.6.2 ORIENT3D(A, B, C, D) 3.1.6.3 INCIRCLE2D(A, B, C, D) 3.1.6.4 INSPHERE(A, B, C, D, E) 3.2 Coordinate Systems and Points 3.3 Vectors 3.3.1 Vector Arithmetic 3.3.2 Algebraic Identities Involving Vectors 3.3.3 The Dot Product 3.3.4 Algebraic Identities Involving Dot Products 3.3.5 The Cross Product 3.3.6 Algebraic Identities Involving Cross Products 3.3.7 The Scalar Triple Product 3.3.8 Algebraic Identities Involving Scalar Triple Products 3.4 Barycentric Coordinates 3.5 Lines, Rays, and Segments 3.6 Planes and Halfspaces 3.7 Polygons 3.7.1 Testing Polygonal Convexity 3.8 Polyhedra 3.8.1 Testing Polyhedral Convexity 3.9 Computing Convex Hulls 3.9.1 Andrew's Algorithm 3.9.2 The Quickhull Algorithm 3.10 Voronoi Regions 3.11 Minkowski Sum and Difference 3.12 Summary 4 Bounding Volumes 4.1 Desired BV Characteristics 4.2 Axis-Aligned Bounding Boxes (AABBs) 4.2.1 AABB-AABB Intersection 4.2.2 Computing and Updating AABBs 4.2.3 AABB from the Object Bounding Sphere 4.2.4 AABB Reconstructed from Original Point Set 4.2.5 AABB from Hill-Climbing Vertices of the Object Representation 4.2.6 AABB Recomputed from Rotated AABB 4.3 Spheres 4.3.1 Sphere-Sphere Intersection 4.3.2 Computing a Bounding Sphere 4.3.3 Bounding Sphere from Direction of Maximum Spread 4.3.4 Bounding Sphere Through Iterative Refinement 4.3.5 The Minimum Bounding Sphere 4.4 Oriented Bounding Boxes (OBBs) 4.4.1 OBB-OBB Intersection 4.4.2 Making the Separating-Axis Test Robust 4.4.3 Computing a Tight OBB 4.4.4 Optimizing PCA-Based OBBs 4.4.5 Brute-Force OBB Fitting 4.5 Sphere-Swept Volumes 4.5.1 Sphere-Swept Volume Intersection 4.5.2 Computing Sphere-Swept Bounding Volumes 4.6 Halfspace Intersection Volumes 4.6.1 Kay-Kajiya Slab-Based Volumes 4.6.2 Discrete-Orientation Polytopes (k-DOPs) 4.6.3 k-DOP-k-DOP Overlap Test 4.6.4 Computing and Realigning k-DOPs 4.6.5 Approximate Convex Hull Intersection Tests 4.7 Other Bounding Volumes 4.8 Summary 5 Basic Primitive Tests 5.1 Closest Point Computations 5.1.1 Closest Point on Plane to Point 5.1.2 Closest Point on Line Segment to Point 5.1.2.1 Distance of Point to Segment 5.1.3 Closest Point on AABB to Point 5.1.3.1 Distance of Point to AABB 5.1.4 Closest Point on OBB to Point 5.1.4.1 Distance of Point to OBB 5.1.4.2 Closest Point on 3D Rectangle to Point 5.1.5 Closest Point on Triangle to Point 5.1.6 Closest Point on Tetrahedron to Point 5.1.7 Closest Point on Convex Polyhedron to Point 5.1.8 Closest Points of Two Lines 5.1.9 Closest Points of Two Line Segments 5.1.9.1 2D Segment Intersection 5.1.10 Closest Points of a Line Segment and a Triangle 5.1.11 Closest Points of Two Triangles 5.2 Testing primitives 5.2.1 Separating Axis Test 5.2.1.1 Robustness of the Separating Axis Test 5.2.2 Testing Sphere against Plane 5.2.3 Testing Box against Plane 5.2.4 Testing Cone against Plane 5.2.5 Testing Sphere against AABB 5.2.6 Testing Sphere against OBB 5.2.7 Testing Sphere against Triangle 5.2.8 Testing Sphere against Polygon 5.2.9 Testing AABB against Triangle 5.2.10 Testing Triangle against Triangle 5.3 Intersecting Lines, Rays, and (Directed) Segments 5.3.1 Intersecting Segment against Plane 5.3.2 Intersecting Ray or Segment against Sphere 5.3.3 Intersecting Ray or Segment against Box 5.3.4 Intersecting Line against Triangle 5.3.5 Intersecting Line against Quadrilateral 5.3.6 Intersecting Ray or Segment against Triangle 5.3.7 Intersecting Ray or Segment against Cylinder 5.3.8 Intersecting Ray or Segment against Convex Polyhedron 5.4 Additional Tests 5.4.1 Testing Point in Polygon 5.4.2 Testing Point in Triangle 5.4.3 Testing Point in Polyhedron 5.4.4 Intersection of Two Planes 5.4.5 Intersection of Three Planes 5.5 Dynamic Intersection Tests 5.5.1 Interval Halving for Intersecting Moving Objects 5.5.2 Separating Axis Test for Moving Convex Objects 5.5.3 Intersecting Moving Sphere against Plane 5.5.4 Intersecting Moving AABB against Plane 5.5.5 Intersecting Moving Sphere against Sphere 5.5.6 Intersecting Moving Sphere against Triangle (and Polygon) 5.5.7 Intersecting Moving Sphere against AABB 5.5.8 Intersecting Moving AABB against AABB 5.6 Summary 6 Bounding Volume Hierarchies 6.1 Hierarchy Design Issues 6.1.1 Desired BVH Characteristics 6.1.2 Cost Functions 6.1.3 Tree Degree 6.2 Building Strategies for Hierarchy Construction 6.2.1 Top-Down Construction 6.2.1.1 Partitioning Strategies 6.2.1.2 Choice of Partitioning Axis 6.2.1.3 Choice of Split Point 6.2.2 Bottom-Up Construction 6.2.2.1 Improved Bottom-Up Construction 6.2.2.2 Other Bottom-Up Construction Strategies 6.2.2.3 Bottom-Up N-Ary Clustering Trees 6.2.3 Incremental (Insertion) Construction 6.2.3.1 The Goldsmith-Salmon Incremental Construction Method 6.3 Hierarchy Traversal 6.3.1 Descent Rules 6.3.2 Generic Informed Depth-First Traversal 6.3.3 Simultaneous Depth-First Traversal 6.3.4 Optimized Leaf-Direct Depth-First Traversal 6.4 Example Bounding Volume Hierarchies 6.4.1 OBB-Trees 6.4.2 AABB-Trees and BoxTrees 6.4.3 Sphere-Tree through Octree Subdivision 6.4.4 Sphere-Tree from Sphere-Covered Surfaces 6.4.5 Generate-and-Prune Sphere Covering 6.4.6 k-DOP Trees 6.5 Merging Bounding Volumes 6.5.1 Merging Two AABBs 6.5.2 Merging Two Spheres 6.5.3 Merging Two OBBs 6.5.4 Merging Two k-DOPs 6.6 Efficient Tree Representation and Traversal 6.6.1 Array Representation 6.6.2 Preorder Traversal Order 6.6.3 Offsets Instead of Pointers 6.6.4 Cache-Friendlier Structures (Non-Binary Trees) 6.6.5 Tree Node and Primitive Ordering 6.6.6 On Recursion 6.6.7 Grouping Queries 6.7 Improved Queries through Caching 6.7.1 Surface Caching: Caching Intersecting Primitives 6.7.2 Front Tracking 6.8 Summary 7 Spatial Partitioning 7.1 Uniform Grids 7.1.1 Cell Size Issues 7.1.2 Grids as Arrays of Linked Lists 7.1.3 Hashed Storage and Infinite Grids 7.1.4 Storing Static Data 7.1.5 Implicit Grids 7.1.6 Uniform Grid Object-Object Test 7.1.6.1 One Test at a Time 7.1.6.2 All Tests at a Time 7.1.7 Additional Grid Considerations 7.2 Hierarchical Grids 7.2.1 Basic Hgrid Implementation 7.2.2 Alternative Hierarchical Grid Representations 7.2.3 Other Hierarchical Grids 7.3 Trees 7.3.1 Octrees (and Quadtrees) 7.3.2 Octree Object Assignment 7.3.3 Locational Codes and Finding the Octant for a Point 7.3.4 Linear Octrees (Hash-Based) 7.3.5 Computing the Morton Key 7.3.6 Loose Octrees 7.3.7 k-d Trees 7.3.8 Hybrid Schemes 7.4 Ray and Directed Line Segment Traversals 7.4.1 k-d Tree Intersection Test 7.4.2 Uniform Grid Intersection Test 7.5 Sort and Sweep Methods 7.5.1 Sorted Linked List Implementation 7.5.2 Array-Based Sorting 7.6 Cells and Portals 7.7 Avoiding Retesting 7.7.1 Bit Flags 7.7.2 Time Stamping 7.7.3 Amortized Time Stamp Clearing 7.8 Summary 8 BSP Tree Hierarchies 8.1 BSP Trees 8.2 Types of BSP Trees 8.2.1 Node-Storing BSP Trees 8.2.2 Leaf-Storing BSP Trees 8.2.3 Solid-Leaf BSP Trees 8.3 Building the BSP Tree 8.3.1 Selecting Dividing Planes 8.3.2 Evaluating Dividing Planes 8.3.3 Classifying Polygons with Respect to a Plane 8.3.4 Splitting Polygons against a Plane 8.3.5 More on Polygon splitting Robustness 8.3.6 Tuning BSP Tree Performance 8.4 using the BSP Tree 8.4.1 Testing Point against a Solid-Leaf BSP Tree 8.4.2 Intersecting Ray against a Solid-Leaf BSP Tree 8.4.3 Polytope Queries on Solid-Leaf BSP Trees 8.5 Summary 9 Convexity-Based Methods 9.1 Boundary-Based Collision Detection 9.2 Closest Features Algorithms 9.2.1 The V-Clip Algorithm 9.3 Hierarchical Polyhedron Representations 9.3.1 The Dobkin-Kirkpatrick Hierarchy 9.4 Linear and Quadratic Programming 9.4.1 Linear Programming 9.4.1.1 Fourier-Motzkin Elimination 9.4.1.2 Seidel's Algorithm 9.4.2 Quadratic Programming 9.5 The Gilbert-Johnson-Keerthi Algorithm 9.5.1 The Gilbert-Johnson-Keerthi Algorithm 9.5.2 Finding the Point of Minimum Norm in a Simplex 9.5.3 GJK, Closest Points and Contact Manifolds 9.5.4 Hill-Climbing for Extreme Vertices 9.5.5 Exploiting Coherence by Vertex Caching 9.5.6 Rotated Objects Optimization 9.5.7 GJK for Moving Objects 9.6 The Chung-Wang Separating Vector Algorithm 9.7 Summary 10 GPU-Assisted Collision Detection 10.1 Interfacing with the GPU 10.1.1 Buffer Readbacks 10.1.2 Occlusion Queries 10.2 Testing Convex Objects 10.3 Testing Concave Objects 10.4 GPU-Based Collision Filtering 10.5 Summary 11 Numerical Robustness 11.1 Robustness Problem Types 11.2 Representing Real Numbers 11.2.1 The IEEE-754 Floating-Point Formats 11.2.2 Infinity Arithmetic 11.2.3 Floating-Point Error Sources 11.3 Robust Floating-Point Usage 11.3.1 Tolerances Comparisons for Floating-Point Values 11.3.2 Robustness through Thick Planes 11.3.3 Robustness through Sharing of Calculations 11.3.4 Robustness of Fat Objects 11.4 Interval Arithmetic 11.4.1 Interval Arithmetic Examples 11.4.2 Interval Arithmetic in Collision Detection 11.5 Exact and Semi-Exact Computation 11.5.1 Exact Arithmetic using Integers 11.5.2 On Integer Division 11.5.3 Segment Intersection using Integer Arithmetic 11.6 Further Suggestions for Improving Robustness 11.7 Summary 12 Geometrical Robustness 12.1 Vertex Welding 12.2 Computing Adjacency Information 12.2.1 Computing a Vertex-to-Face Table 12.2.2 Computing an Edge-to-Face Table 12.2.3 Testing Connectedness 12.3 Holes, Cracks, Gaps, and T-Junctions 12.4 Merging Coplanar Faces 12.4.1 Testing Coplanarity of Two Polygons 12.4.2 Testing Polygon Planarity 12.5 Triangulation and Convex Partitioning 12.5.1 Triangulation by Ear Cutting 12.5.1.1 Triangulating Polygons with Holes 12.5.2 Convex Decomposition of Polygons 12.5.3 Convex Decomposition of Polyhedra 12.5.4 Dealing with "Nondecomposable" Concave Geometry 12.6 Consistency Testing using Euler's Formula 12.7 Summary 13 Optimization 13.1 CPU Caches 13.2 Instruction Cache Optimizations 13.3 Data Cache Optimizations 13.3.1 Structure Optimizations 13.3.2 Quantized and Compressed Vertex Data 13.3.3 Prefetching and Preloading 13.4 Cache-Aware Data Structures and Algorithms 13.4.1 A Compact Static k-d Tree 13.4.2 A Compact AABB Tree 13.4.3 Cache-Obliviousness 13.5 Software Caching 13.5.1 Cached Linearization Example 13.5.2 Amortized Predictive Linearization Caching 13.6 Aliasing 13.6.1 Type-Based Alias Analysis 13.6.2 Restricted Pointers 13.6.3 Avoiding Aliasing 13.7 Parallelism through SIMD Optimizations 13.7.1 4 Spheres versus 4 Spheres SIMD Test 13.7.2 4 Spheres versus 4 AABBs SIMD Test 13.7.3 4 AABBs versus 4 AABBs SIMD Test 13.8 Branching 13.9 Summary References Index
2022-01-11 10:02:06 3MB 碰撞检测
1