深度照片增强器的Pytorch实现 该项目基于论文《深度照片增强器:使用GAN进行照片增强的不成对学习》。 作者的项目地址为: 我的代码基于 中文文档说明请看 要求 Python 3.6 CUDA 10.0 要安装的要求: pip install -r requirements.txt 先决条件 数据 Expert-C 资料夹 所有超参数都在libs\constant.py 需要创建一些文件夹: images_LR :用于存储数据集 Expert-C input 在以上两个文件夹的每个文件夹中,需要创建以下三个新文件夹: Testing Training1 Training2 models :用于存储所有训练生成的文件: gt_images input_images pretrain_checkpoint pretrain_images test_ima
2022-08-07 16:41:18 134.03MB python pytorch image-enhancement deep-photo-enhancer
1
海豹 ⠀ ⠀⠀ 半监督图分类的PyTorch实现:分层图透视(WWW 2019) 抽象的 节点分类和图分类是两个图学习问题,它们分别预测节点的类标签和图的类标签。 图的节点通常代表现实世界的实体,例如,社交网络中的用户或蛋白质-蛋白质相互作用网络中的蛋白质。 在这项工作中,我们考虑一个更具挑战性但实际上有用的设置,其中节点本身是一个图实例。 这导致了分层图的透视图,这种透视图出现在许多领域中,例如社交网络,生物网络和文档收集。 例如,在社交网络中,一群具有共同兴趣的人形成一个用户组,而许多用户组则通过交互或普通成员相互连接。 我们在层次图中研究节点分类问题,其中“节点”是图实例,例如上述示例中的用户组。 由于标签通常受限于实际数据,因此我们通过谨慎/主动迭代(或简称SEAL-C / AI)设计了两种新颖的半监督解决方案,称为半监督图分类。 SEAL-C / AI采用了一个迭代框架,该框
1
PyTorch中的广泛残留网络(WideResNets) 在PyTorch中实现的CIFAR10 / 100的WideResNets。 此实现所需的GPU内存少于官方Torch实现所需的GPU内存: : 。 例子: python train.py --dataset cifar100 --layers 40 --widen-factor 4 致谢 宽余网络(BMVC 2016) ,作者:Sergey Zagoruyko和Nikos Komodakis。
1
Efficient Deep Learning.rar
2022-08-03 20:05:34 29.69MB 深度学习
1
Mech-Eye Deep 结构图
2022-08-02 16:05:38 5.06MB 梅卡曼德
1
闪光 链接到项目: : Flash是一个端到端的深度学习平台,允许用户在短短几分钟内创建,训练和部署自己的神经网络模型,而无需编写任何代码。 该平台当前支持两种类型的任务: 影像分类 通过使用它们来训练ResNet-34或MobileNet v2模型来对您自己的数据集中的图像进行分类。 培训通过转移学习进行,其中可用的模型将在ImageNet数据集上进行预训练。 情绪分析 通过在您自己的数据集上训练基于LSTM或GRU的顺序模型,从句子中预测情感。 将从头开始训练模型。 这个怎么运作 使用Flash很容易。 只需单击几下,您就可以自动训练和部署模型。 您只需要选择模型并上传数据集,就可以了。 无需任何代码或经验。 训练 要训​​练模型,您必须上传自己的数据集并选择模型参数。 根据数据集的大小,模型可能需要3到10分钟左右的时间来训练和部署模型。 上传配置后,平台将为您分配一个唯
2022-08-02 12:17:36 8.31MB deep-learning aws-lambda sentiment-analysis reactjs
1
Mech-Eye Deep技术规格
2022-07-30 09:01:22 1.83MB 梅卡曼德
1
裂缝的 Unet 语义分割 使用 PyTorch、OpenCV、ONNX 运行时的实时裂缝分割 依存关系: 火炬 OpenCV ONNX 运行时 CUDA >= 9.0 指示: 1.使用您的数据集训练模型并在supervisely.ly上使用unet_train.py保存模型权重(.pt文件) 2.使用pytorch_to_onnx.py将模型权重转换为ONNX格式 3.使用crack_det_new.py获取实时推理 裂纹分割模型文件可点击此下载 结果: 图表:
1
使用pytorch搭建的简单的LSTM多变量多输出时间序列预测的使用例。 生成了多个以sinx、cosx、tanx构成的序列,使用[i:i+50]的数据预测[i+51]的数据。x是步长为0.1的等差数列 作者初学时用来当说明文档使用,程序适合初学者捣鼓,注释写的很详细了
2022-07-29 09:07:53 3KB LSTM Python pytorch deep
1
论文阅读笔记 Xie_Deep Learning Enabled Semantic Communication System 共计9页,详细手写
2022-07-28 18:22:00 2.14MB 手写笔记 论文阅读
1