运算放大器是电子电路中的核心元件,用于放大信号。本文主要讨论了两种类型的运算放大器:单位增益稳定放大器(UGS)和非完全补偿放大器,它们各有特点和适用场景。 单位增益稳定放大器是设计为在增益为1时保持稳定工作的放大器。这种设计的优势在于其稳定性,即使在增益设置为单位增益时,UGS也能避免振荡,确保电路的可靠运行。然而,UGS的增益带宽积通常较低,意味着在高频时其放大能力会减弱。例如,文中提到一个UGS的增益带宽积为2MHz,这意味着在该频率以上,放大性能将显著下降。 相比之下,非完全补偿放大器具有更小的补偿电容,导致更高的增益带宽和压摆率,从而提供更快的响应速度。这种设计通常用于需要高速处理的场合,如数据采集系统或高速信号调理电路。但代价是更高的功耗,并且在单位增益时的稳定性较差。非完全补偿放大器的增益带宽积可以是UGS的几倍,例如文中的例子为5倍,压摆率也更高。然而,由于存在额外的高频极点,当增益接近单位增益时,相位裕量可能非常小,可能导致电路不稳定。 图2展示了非完全补偿放大器在实际应用中可能遇到的问题。例如,图2a中的错误在于反馈电容在高频段引起响应曲线的不平坦,可能导致稳定性问题。图2b的并联反馈滤波器牺牲了低频增益以实现平坦响应,而图2c的积分器设计也可能引发稳定性问题。 随着技术的进步,现代的UGS运放能够在保持低功耗的同时,提供接近甚至超越非完全补偿放大器的速度性能。例如,OPA228、OPA637、OPA345和LMP7717等型号都是UGS版本的高性能运放,它们分别针对不同的应用需求,如精密测量、高速响应或宽频带操作。 在选择运算放大器时,设计者需要根据具体应用的性能需求、功耗限制以及稳定性要求来权衡。对于那些需要高速和高精度同时兼备的系统,非完全补偿放大器可能是更好的选择,而对稳定性有严格要求或功耗敏感的系统,UGS则更具优势。设计者应深入理解这两种放大器的工作原理和潜在问题,必要时可以在专业论坛上寻求帮助,以确保选择最适合的运算放大器。
2025-11-14 08:36:20 102KB 电子竞赛
1
在医院管理系统中,科室管理是一个非常重要的模块。通过使用 DevExpress 的 TreeList 控件,我们可以方便地以树形结构展示科室信息,并实现对科室节点的增删改操作。本程序源码是使用C# 和WinForms 项目编程中使用 DevExpress TreeList 控件来构建一个完整的科室管理系统。 在开发医院科室管理系统时,采用C#语言结合WinForms框架以及DevExpress的TreeList控件,可以有效地构建出一个界面友好、操作简便的科室管理模块。该模块在医院管理系统中占有举足轻重的地位,因为科室信息的准确性和可操作性直接影响到医院日常管理的效率和质量。 TreeList控件是DevExpress库中的一个功能强大的控件,它能够将数据以树形列表的形式展示出来。这样的表现形式非常适合用来展示医院科室这种具有层级结构的信息。在TreeList中,每个科室可以被看作是一个节点,每个节点下面可以包含子节点,代表下属的部门或者小组。这种层级结构使得用户能够非常直观地浏览和管理科室信息。 在实现科室管理模块的增删改功能时,首先需要对科室信息进行建模,定义好科室的数据结构,如科室ID、科室名称、科室位置、负责人等信息。接着,在WinForms项目中添加TreeList控件,并将其绑定到科室数据源上。通过控件提供的API,可以实现对科室节点的增加、删除和修改等操作。例如,在添加新科室时,可以通过TreeList控件的API向数据源中添加一个新的节点,并赋予相应的科室信息;在修改科室信息时,可以直接在TreeList中选中相应的科室节点,编辑其属性,然后保存修改;在删除科室时,则需要先确保该科室下没有子节点,然后通过API从数据源中删除对应的节点。 为了提高用户体验和数据的安全性,还可以为科室管理模块添加权限控制,确保只有具备相应权限的用户才能进行增加、删除和修改操作。此外,对于科室数据的操作最好能够有日志记录,这样有助于后续的审计和问题追踪。 在整个科室管理系统的设计过程中,还应考虑系统的可扩展性和维护性。例如,当医院组织结构发生变化时,系统应能快速适应这种变化,科室的层级关系能够灵活调整,科室信息能够及时更新。 使用C# WinForms结合DevExpress TreeList控件开发的科室管理系统,不仅能够提供直观的操作界面,还能满足医院科室管理的复杂需求,是构建高效医院信息管理系统的一个重要组成部分。
2025-11-14 08:31:22 17.96MB winforms Devexpress TreeList
1
标题中的“2层LCD12864万年历”是指一个使用了LCD12864显示器设计的万年历设备,它采用两层电路板进行构建,以实现更紧凑和高效的布局。这种万年历能显示日期、时间,并且具有长久的计算能力,覆盖多个世纪,因此被称为“万年历”。 LCD12864是液晶显示屏(LCD)的一种,具有128列和64行的像素点阵,总计8192个像素。这种显示器通常用于各种嵌入式系统,如电子钟、计算器、智能家居设备等,因为它能够提供清晰的文字和图形显示,同时功耗较低。 在描述中提到了“带原理图和PCB”,这意味着这个项目包含了设计的电路原理图和印制电路板(PCB)布局。原理图是电气连接的图形表示,用于展示电路元件之间的关系和工作原理,帮助理解电路的工作流程。PCB则是将这些元件实际布局到物理板上的设计,包括元件位置、走线路径和信号完整性考虑,确保电子设备的正常运行。 制作LCD12864万年历需要以下关键知识点: 1. **微控制器(MCU)**:通常,万年历会使用一款微控制器,如Arduino或STM32等,来处理时间计算、用户交互以及驱动LCD显示。 2. **时钟芯片**:为了准确计时,设备会配备RTC(Real-Time Clock)芯片,如DS1307或PCF8523,它们可以独立于主MCU保持时间。 3. **LCD12864接口**:理解如何与LCD12864通信是非常重要的,这可能涉及到SPI、I2C或并行接口,具体取决于所用LCD模块的型号。 4. **电源管理**:为了长期运行,万年历可能使用电池供电,因此需要考虑电源管理电路,确保低功耗。 5. **PCB设计原则**:在设计PCB时,需要考虑信号完整性和电磁兼容性(EMC),合理安排元件布局和布线,以避免干扰。 6. **编程和固件开发**:编写控制程序来处理时间计算、更新LCD显示、处理用户输入等任务,这部分通常使用C或C++语言。 7. **硬件调试**:在制作过程中,可能需要使用示波器、逻辑分析仪等工具进行硬件调试,确保所有部分正常工作。 8. **电路原理图阅读**:了解如何解读原理图,找出各个组件之间的连接关系,这对理解整个系统至关重要。 9. **PCB制造和组装**:根据PCB设计文件进行生产,并进行手工焊接或SMT(表面贴装技术)组装。 10. **测试与校准**:完成组装后,需要进行功能测试,确保万年历的精度,并对时钟进行校准。 通过掌握以上知识点,开发者可以成功地构建出一个2层LCD12864万年历,利用提供的原理图和PCB设计文件,进一步实现自己的DIY项目。
2025-11-14 07:17:30 8.65MB LCD12864
1
Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-11-14 00:22:08 2.92MB matlab
1
Matlab是一种广泛应用于工程计算、数据分析、算法开发等领域的高级编程语言和交互式环境。在Matlab中,用户可以利用其内置的函数和工具箱进行数学建模和算法实现。线性逆模型(Linear Inverse Model,简称LIM)是一种常用的统计模型,用于从一组已知的线性关系中估计出一组未知的参数。LIM在经济学、生态学、气候科学等多个领域有着广泛的应用。 在Matlab中建立线性逆模型,需要考虑数据的收集、预处理以及参数的估计等步骤。数据收集是建模的基础,需要确保数据的准确性和完整性。在获得数据之后,通常需要对数据进行清洗和预处理,如去除异常值、标准化数据等,以便更好地反映数据的内在结构。 参数估计是构建线性逆模型的核心步骤。在Matlab中,可以通过矩阵运算来实现参数的估计。具体来说,可以通过最小二乘法、极大似然估计或贝叶斯估计等方法来求解模型参数。在Matlab中,有多个函数可以用于线性模型的参数估计,比如`lscov`、`regress`等。 Matlab的图形用户界面(GUI)也是一个强大的工具,它可以帮助用户更直观地理解模型的结构和参数。通过GUI,用户可以调整模型参数并立即看到参数变化对模型输出的影响,从而优化模型。 在本压缩包中,包含了Matlab代码和数据,这些代码和数据是为了建立线性逆模型而设计的。用户可以通过这些资源,轻松地在Matlab环境中重现LIM模型,并对模型进行验证和调整。这些代码和数据文件可能包括了数据输入、数据处理、模型建立、参数估计、结果输出等一系列环节的实现代码。 为了使用这些资源,用户需要具备一定的Matlab操作能力和线性逆模型的相关知识。通过阅读和理解这些代码,用户可以更加深入地了解线性逆模型的构建过程,并根据自身的研究需求进行调整和优化。此外,通过实践操作,用户可以加深对Matlab编程和数据处理的理解,提高数据分析和模型建立的能力。 此外,Matlab中还有专门的工具箱可以用于更复杂的数据分析和模型构建,例如统计工具箱、优化工具箱等。这些工具箱中包含了许多高级函数,可以进一步提高线性逆模型的精确度和效率。用户可以根据实际需要,选择使用这些工具箱中的函数来完善模型。 Matlab为建立线性逆模型提供了强大的支持,无论是在数据处理、模型构建还是结果分析等方面都提供了丰富的工具和函数。通过本压缩包中的代码和数据资源,用户可以更快地在Matlab环境中建立起自己的线性逆模型,并进行深入的研究。
2025-11-13 21:39:37 7.03MB
1
单例模式是一种设计模式,它的主要目的是确保一个类只有一个实例,并提供一个全局访问点来获取这个实例。在软件工程中,这种模式常用于控制共享资源的访问,比如配置信息类、数据库连接池管理等。 单例模式的名称是“Singleton”,来源于英文单词“单一”。在Java语言中,实现单例模式主要有三种方式: 1. **饿汉式**(Eager Initialization):这是最简单的实现方式,类加载时就创建了单例实例。这样保证了线程安全,但可能会造成资源浪费,因为无论是否使用,都会在类加载时创建对象。实现代码通常是将构造函数私有化,然后创建一个静态的类成员实例。 ```java public class Singleton { private static final Singleton INSTANCE = new Singleton(); private Singleton() {} public static Singleton getInstance() { return INSTANCE; } } ``` 2. **懒汉式**(Lazy Initialization):在类被加载后,直到首次调用getInstance方法时才创建实例。这种方式延迟了实例化的时间,但如果不加同步控制,在多线程环境下可能导致多个实例。为了解决这个问题,可以使用synchronized关键字修饰getInstance方法。 ```java public class Singleton { private static Singleton theInstance = null; private Singleton() {} public synchronized static Singleton getInstance() { if (theInstance == null) { theInstance = new Singleton(); } return theInstance; } } ``` 3. **登记式**(Registry,又称双重检查锁定):结合了前两种方式的优点,既延迟了实例化,又保证了线程安全。它在初始化实例时会进行两次检查,第一次是在类加载时,第二次是在同步块内,以避免不必要的同步开销。 ```java public class Singleton { private volatile static Singleton instance; private Singleton() {} public static Singleton getInstance() { if (instance == null) { synchronized (Singleton.class) { if (instance == null) { instance = new Singleton(); } } } return instance; } } ``` 登记式单例还有一种变体,通过`Class.forName().newInstance()`的方式实现,利用了类加载器的特性来保证单例,这在某些特定场景下可能更为适用。 每种实现方式都有其优缺点。饿汉式简单高效,但可能会造成资源浪费;懒汉式延迟初始化,节省资源,但需处理多线程问题;登记式则在延迟初始化和线程安全之间找到了平衡,但代码相对复杂。此外,登记式单例模式的一个优点是它可以被子类化,而饿汉式和懒汉式单例通常不支持。 在实际应用中,单例模式常见于以下场合: - **配置信息类**:如XML配置文件的解析,只创建一个解析器实例来读取和管理配置信息。 - **数据库连接池控制类**:管理数据库连接,通过单例确保所有请求都使用同一组连接,提高性能并减少资源消耗。 - **Web应用中的控制类**:如Struts框架的ActionServlet,通过web.xml配置,由容器(如Tomcat)在启动时创建一个全局实例,处理所有请求。 总结来说,单例模式是设计模式的一种,它的核心是限制类的实例化次数为一次,以达到控制共享资源的目的。Java中有多种实现方式,包括饿汉式、懒汉式和登记式,它们在实现细节和性能上有差异,适用于不同的应用场景。理解并熟练运用这些实现方式,可以帮助我们编写出更高效、更可靠的代码。
2025-11-13 21:36:27 1.44MB 单例模式
1
一、技术架构​ 前端框架 - Vue.js:Vue 凭借其高效的响应式编程和组件化开发模式,构建出流畅且交互性强的用户界面。通过 Vue Router 实现灵活的前端路由,确保用户在社区不同页面间快速切换,无需整页刷新。组件化设计让页面元素可复用,从社区公告展示组件到复杂的用户反馈表单,开发与维护效率大幅提升。​ 后端框架 - Spring Boot:Spring Boot 以自动配置和快速开发特性,迅速搭建起稳定可靠的后端服务。利用 Spring MVC 处理前端各类请求,涵盖社区资讯获取、用户信息管理、物业服务请求等。借助 Spring Data JPA,轻松实现与关系型数据库的交互,高效存储和管理社区相关数据。​ 数据库 - MySQL:MySQL 作为开源关系型数据库,为智慧社区网站提供坚实的数据存储基础。存储用户信息(包括基本资料、联系方式、权限等)、社区活动信息、物业报修记录、房屋租赁信息等。合理设计表结构,建立起数据间的关联关系,方便数据查询与统计。​ 缓存 - Redis:Redis 作为内存缓存数据库,显著提升系统性能。缓存热门社区资讯、常用配置信息等,减少数据库查询
2025-11-13 18:49:32 20.66MB vue springboot 毕业设计
1
原版本升级,更稳定功能更强 感谢网友对Beta的意见反馈 一、 使用G-TcpClient模块 二、 可以设定间隔时间发起大规模长、短连接 三、 可以发起密集数据包,包括即时和定时发送 四、 数据发送工作由一个独立线程担当,连接发起工作可设置多个独立的线程担当。 五、 可以多种模式组合连接或发送数据。
2025-11-13 17:20:40 1.13MB IOCP TcpServer 完成端口 破连接限制
1
/******************************************************************************** * * * G-TcpClient:基于完成端口的Tcp客户端通讯模块(IOCP TcpClient) * * * * Copyright © 2009-2010 GuestCode 代码客(卢益贵) * * 版权所有 侵权必究 * * * * QQ:48092788 E-Mail:48092788@qq.com 源码博客:http://blog.csdn.net/guestcode * * * * GSN:34674B4D-1F63-11D3-B64C-11C04F79498E * * * ********************************************************************************/ #pragma once extern "C" { //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 类型定义 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> #ifndef _GTYPE #define _GTYPE typedef unsigned char* PGBUF; typedef void(__stdcall *PGFN_ON_CONNECTED)(unsigned int unPerHandle, unsigned char* pBuf, unsigned int unLen); typedef void(__stdcall *PGFN_ON_RECEIVED)(unsigned int unPerHandle, unsigned char* pBuf, unsigned int unLen); typedef void(__stdcall *PGFN_ON_SENDED)(unsigned int unPerHandle, unsigned int unSendID, unsigned int unLen); typedef void(__stdcall *PGFN_ON_DISCONNECTED)(unsigned int unPerHandle, unsigned int unFlag); typedef void(__stdcall *PGFN_ON_THREAD)(unsigned int unThreadContext, unsigned int unThreadHandle, unsigned int unThreadID, BOOL bIsBegin, unsigned int unFlag); /* typedef struct _CONNECTION { unsigned int unPerHandle; }CONNECTION, *PCONNECTION; typedef void(__stdcall *PGFN_ON_CONNECTED)(unsigned int unPerHandle, unsigned char* pBuf, unsigned int unLen); typedef void(__stdcall *PGFN_ON_RECEIVED)(PCONNECTION pConnection, unsigned char* pBuf, unsigned int unLen); typedef void(__stdcall *PGFN_ON_SENDED)(PCONNECTION pConnection, unsigned int unSendID, unsigned int unLen); typedef void(__stdcall *PGFN_ON_DISCONNECTED)(PCONNECTION pConnection, unsigned int unFlag); void __stdcall GTcpClt_OnThread(unsigned int unThreadContext, unsigned int unThreadHandle, unsigned int unThreadID, BOOL bIsBegin, unsigned int unFlag) { } void __stdcall GTcpClt_OnConnected(unsigned int unPerHandle, void* _NULL, unsigned int unNULL) { } void __stdcall GTcpClt_OnReceived(PCONNECTION pConnection, unsigned char* pBuf, unsigned int unLen) { } void __stdcall GTcpClt_OnSended(PCONNECTION pConnection, unsigned int unSendID, unsigned int unLen) { } void __stdcall GTcpClt_OnDisconnected(PCONNECTION pConnection, unsigned int unFlag) { } */ #define _USE_UNICODE 1 #ifndef _DLL //#define _DLL #endif #ifdef _DLL #define DllExport _declspec(dllexport) #else #define DllExport #endif #define VER_FLAG_WIDE_CHAR 0x01 #define VER_FLAG_BETA 0x02 #define VER_FLAG_ZERO_READ 0x04 #define VER_FLAG_TRIAL 0x08 #define VER_FLAG_DEBUG 0x10 #define HNDS_CONNECT 1 #define HNDS_CONNECTED 2 #define HNDS_DISCONNECT 3 #endif //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 类型定义 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 版本信息 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> #if(_USE_UNICODE) DllExport wchar_t* __stdcall GTcpClt_GetVersionName(void); #else DllExport char* __stdcall GTcpClt_GetVersionName(void); #endif DllExport float __stdcall GTcpClt_GetVersionNumber(void); DllExport unsigned int __stdcall GTcpClt_GetVersionFlag(void); //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 版本信息 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 功能函数 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DllExport DWORDLONG __stdcall GTcpClt_GetPhyMemInfo(DWORDLONG* pdwTotal); #if(_USE_UNICODE) DllExport void __stdcall GTcpClt_WriteLog(wchar_t* pstrLog, unsigned int unCode = 0); DllExport void __stdcall GTcpClt_GetHostIP(wchar_t* pstrIP, unsigned int unLen, BOOL bIsInternetIP = FALSE); #else DllExport void __stdcall GTcpClt_WriteLog(char* pstrLog, unsigned int unCode = 0); DllExport void __stdcall GTcpClt_GetHostIP(char* pstrIP, unsigned int unLen, BOOL bIsInternetIP = FALSE); #endif //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 功能函数 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //>>>>>>>>>>>>>>>>>>>>>>>>>>>> PerIoData函数 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DllExport unsigned int __stdcall GTcpClt_GetGBufSize(void); DllExport unsigned int __stdcall GTcpClt_GetIoDataSize(void); DllExport unsigned int __stdcall GTcpClt_GetIoDataUse(void); DllExport unsigned int __stdcall GTcpClt_GetIoDataTotal(void); DllExport float __stdcall GTcpClt_GetIoDataUseRate(void); DllExport unsigned int __stdcall GTcpClt_GetIoDataUseMem(void); //<<<<<<<<<<<<<<<<<<<<<<<<<<<< PerIoData函数 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //>>>>>>>>>>>>>>>>>>>>>>>>>>>> PerHndData函数 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DllExport unsigned int __stdcall GTcpClt_GetHndDataUse(void); DllExport unsigned int __stdcall GTcpClt_GetHndDataTotal(void); DllExport unsigned int __stdcall GTcpClt_GetHndDataSize(void); DllExport float __stdcall GTcpClt_GetHndDataUseRate(void); DllExport unsigned int __stdcall GTcpClt_GetHndDataUseMem(void); //<<<<<<<<<<<<<<<<<<<<<<<<<<<< PerHndData函数 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 信息函数 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DllExport unsigned int __stdcall GTcpClt_GetThreadNumber(void); DllExport unsigned int __stdcall GTcpClt_GetPageSize(void); DllExport unsigned int __stdcall GTcpClt_GetBlockSize(void); DllExport unsigned int __stdcall GTcpClt_GetConnectCount(void); DllExport unsigned int __stdcall GTcpClt_GetThreadRunCount(unsigned int unThreadContext); DllExport unsigned int GTcpClt_GetState(unsigned int unPerHandle); #if(_USE_UNICODE) DllExport wchar_t* __stdcall GTcpClt_GetThreadName(unsigned int unThreadContext); DllExport BOOL __stdcall GTcpSock_GetPerHandleInfo(unsigned int unPerHandle, wchar_t* pstrIP, unsigned int unIPLen, wchar_t* pstrPort, unsigned int unPortLen); DllExport BOOL __stdcall GTcpSock_GetPerHandleName(unsigned int unPerHandle, wchar_t* pstrName, unsigned int unLen); #else DllExport char* __stdcall GTcpClt_GetThreadName(unsigned int unThreadContext); DllExport BOOL __stdcall GTcpSock_GetPerHandleInfo(unsigned int unPerHandle, char* pstrIP, unsigned int unIPLen, char* pstrPort, unsigned int unPortLen); DllExport BOOL __stdcall GTcpSock_GetPerHandleName(unsigned int unPerHandle, char* pstrName, unsigned int unLen); #endif DllExport unsigned int __stdcall GTcpClt_GetProcesserNumber(void); DllExport BOOL __stdcall GTcpClt_IsActive(); DllExport unsigned int __stdcall GTcpClt_GetUseMem(void); //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 信息函数 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 操作函数 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DllExport void* __stdcall GTcpClt_GetPerHandleOwner(unsigned int unPerHandle); DllExport BOOL __stdcall GTcpClt_SetPerHandleOwner(unsigned int unPerHandle, void* pOwner); DllExport PGBUF __stdcall GTcpClt_AllocGBuf(void); DllExport BOOL __stdcall GTcpClt_FreeGBuf(PGBUF pGBuf); DllExport unsigned int __stdcall GTcpClt_PostSendGBuf(unsigned int unPerHandle, PGBUF pGBuf, unsigned int unLen); DllExport unsigned int __stdcall GTcpClt_PostSendBuf(unsigned int unPerHandle, unsigned char* pBuf, unsigned int unLen); DllExport void __stdcall GTcpClt_PostBroadcast(unsigned char* pBuf, unsigned int unLen); //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 操作函数 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 主要函数 DllExport BOOL __stdcall GTcpClt_CloseConnect(unsigned int unPerHandle); #if(_USE_UNICODE) DllExport unsigned int __stdcall GTcpClt_OpenConnect( wchar_t* pstrRemoteIP, wchar_t* pstrRemotePort, wchar_t* pstrLocalIP, PGFN_ON_CONNECTED pfnOnConnected, PGFN_ON_RECEIVED pfnOnReceived, PGFN_ON_SENDED pfnOnSended, PGFN_ON_DISCONNECTED pfnOnDisconnected, void* pOwner = NULL); #else DllExport unsigned int __stdcall GTcpClt_OpenConnect( char* pstrRemoteIP, char* pstrRemotePort, char* pstrLocalIP, PGFN_ON_CONNECTED pfnOnConnected, PGFN_ON_RECEIVED pfnOnReceived, PGFN_ON_SENDED pfnOnSended, PGFN_ON_DISCONNECTED pfnOnDisconnected, void* pOwner = NULL); #endif DllExport BOOL __stdcall GTcpClt_Start(unsigned int unHeartbeatTime = 60, unsigned int unMaxNetDelayTime = 5, unsigned int unGuardThreadSleepTime = 2, PGFN_ON_THREAD pfnOnThread = NULL, unsigned int unHndDataInitNumber = 1000, unsigned int unIoDataInitNumber = 1500, unsigned int unProcesserThreadNumber = 0, unsigned int unWorkerThreadNumber = 0); DllExport void __stdcall GTcpClt_Stop(void); //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 主要函数 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< } /* ... extern "C" */
2025-11-13 17:20:09 1.3MB
1
《Visual C++实践与提高——COM和COM+篇》这本书最适合新手的,除了理论还有大量的示例能够帮助新手快速入门,并且该书第二章带领新手从c++一步步走向COM,引人入胜。因此特上传该书源码供大家学习。 《Visual C++实践与提高——COM和COM+篇》是一本针对初学者的权威教程,它不仅详细解释了COM和COM+的概念和工作机制,还通过大量的实例演示如何使用Visual C++来开发COM组件。COM(Component Object Model,组件对象模型)是一种由微软主导的跨语言、跨平台的组件标准,它允许在不同程序之间共享和复用代码。而COM+是基于COM的技术,提供了事务处理、对象池等高级服务,是COM技术的扩展。这本书的第二章特别设计来引导初学者逐步理解并掌握如何从C++语言出发,深入COM的世界。 书中的源码对于理解COM和COM+的实现细节至关重要,它允许读者不仅可以阅读理论知识,还能通过实际代码来加深理解。源码中可能包含了创建和使用COM组件的示例,如接口定义、类工厂实现、注册表操作等关键步骤。通过这些示例,学习者可以逐步了解COM组件的生命周期管理、组件之间的通信机制以及如何将组件集成到应用程序中。 此外,源码也可能会涉及COM+相关的内容,比如COM+服务的使用示例,如何在COM+环境中部署和管理组件,以及COM+如何提供如安全性和事务支持等企业级特性的使用。这些内容对于希望开发稳定、可扩展的企业应用系统的开发者来说,是非常宝贵的知识。 源码的结构通常会遵循COM的开发准则,包括定义类、接口、继承和聚合等面向对象的编程范式,以及对引用计数、身份管理等COM特有机制的处理。学习这些源码能够帮助开发者构建出性能良好、易于维护和扩展的软件组件。 使用这本书及源码的学习者,不仅能掌握COM和COM+的理论基础,还能通过实践来提高编程能力,为将来开发更为复杂的软件系统打下坚实的基础。因此,这本书和随附的源码对于希望深入学习Visual C++以及COM和COM+技术的新手来说,是一套不可多得的学习材料。
2025-11-13 17:02:10 7.97MB VisualC++ 源码
1