用PyTorch微调预训练卷积神经网络
2021-11-17 11:34:33 21KB Python开发-机器学习
1
PyTorch图像模型 赞助商 非常感谢我的的支持! 除了以上链接的赞助商之外,我还从以下位置获得了硬件和/或云资源: 英伟达( ) TFRC( ) 我很幸运能够自己投入大量时间和金钱来支持这个项目和其他开源项目。 但是,随着项目范围的扩大,需要外部支持来继续当前的硬件,基础设施和电力成本轨迹。 什么是新的 2021年5月5日 从添加MLP-Mixer模型和端口预训练权重 从添加CaiT模型和预训练权重 从添加ResNet-RS模型和权重。 添加CoaT模型和权重。 感谢 为TResNet,MobileNet-V3,ViT模型添加新的ImageNet-21k权重和微调的权重。 谢谢 添加GhostNet模型和权重。 谢 更新ByoaNet注意模型 改进SA模块的初始化 将基于实验的独立Swin attn模块和swinnet 实验的一致“ 26t”模型定义。 添加改进的
2021-11-16 15:52:37 14.12MB pytorch resnet pretrained-models mixnet
1
PyTorch图像模型 赞助商 非常感谢我的的支持! 除了以上链接的赞助商之外,我还从以下位置获得了硬件和/或云资源: 英伟达( ) TFRC( ) 我很幸运能够自己投入大量时间和金钱来支持这个项目和其他开源项目。 但是,随着项目范围的扩大,需要外部支持来继续当前的硬件,基础设施和电力成本轨迹。 什么是新的 2021年5月5日 从添加MLP-Mixer模型和端口预训练权重 从添加CaiT模型和预训练权重 从添加ResNet-RS模型和权重。 添加CoaT模型和权重。 感谢 为TResNet,MobileNet-V3,ViT模型添加新的ImageNet-21k权重和微调的权重。 谢谢 添加GhostNet模型和权重。 谢 更新ByoaNet注意模型 改进SA模块的初始化 将基于实验的独立Swin attn模块和swinnet 实验的一致“ 26t”模型定义。 添加改进的E
2021-11-14 12:09:56 14.12MB pytorch resnet pretrained-models mixnet
1
该应用程序可以从任何预先训练的网络中提取特征。 特征: 1.加载图像数据存储2. 提取特征2.规范化功能3. 将特征保存在工作区和PC中4.从工作区和PC加载自定义模型5. 从自定义模型中提取特征6. 打开机器学习应用
2021-11-13 02:02:57 122KB matlab
1
用多种预训练TensorFlow模型提取图像特征
2021-11-12 20:53:01 169KB Python开发-机器学习
1
yoloV3与训练的权重文件,基于coco数据集,下载下来直接就可以使用
2021-11-11 15:16:04 154.96MB yoloV3 权重 预训练
1
官方h5权重文件,xception_weights_tf_dim_ordering_tf_kernels Linux下是放在“~/.keras/models/”中 windows用户直接将文件放置在:C:\Users\用户名\.keras\models 下即可。官方GitHub下载速度慢,给需要的朋友们。
2021-11-10 15:30:56 87.63MB Keras 预训练 模型 全值文件
1
NLP项目 自然语言处理项目,其中包括有关以下方面的概念和脚本: gensim , fastText和tensorflow实现。 参见, doc2vec , word2vec averaging和Smooth Inverse Frequency实现 对话系统的类别和组成 tensorflow LSTM (请参阅 ,和 , ) fastText实现 ELMo,ULMFit,GPT,BERT,XLNet的原理 HMM Viterbi实现。 参见,中文解读 Named_Entity_Recognition 通过双向LSTM + CRF,张量tensorflow实现对NER品牌。 参见中文注释,中文解读 7_Information_retrieval 8_Information_extraction 9_Knowledge_graph 10_Text_generation 11
1
在10分钟内用Flask作为Web App部署Keras模型 一个漂亮且可自定义的Web应用程序,可轻松部署DL模型 10分钟入门 克隆此仓库 安装要求 运行脚本 转到 做完了! :party_popper: :backhand_index_pointing_down: 屏幕截图: 新的功能 :fire: 增强的,适合移动设备的UI 支持图像拖放 使用原始JavaScript,HTML和CSS。 删除jQuery和Bootstrap 默认情况下切换到TensorFlow 2.0和 将Docker基本映像升级到Python 3(2020年) 如果您需要使用Python 2.x或TensorFlow 1.x,请签出快照 与Docker一起运行 使用 ,您可以在数分钟内快速
2021-11-08 21:59:57 22KB flask deep-learning deployment tensorflow
1
ImageNet上训练好的 inception_resnet_v2_2016_08_30模型,imagenet,可用于图像识别
2021-11-08 16:54:21 226.23MB inception_resne
1