本文从实战的角度出发,带领大家感受一下MixNet,我们还是使用以前的植物分类数据集,模型采用mixnet_m。 通过本文你可以学习到: 1、如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段? 2、如何调用自定义的模型? 3、如何使用混合精度训练? 4、如何使用梯度裁剪防止梯度爆炸? 5、如何使用DP多显卡训练? 6、如何绘制loss和acc曲线? 7、如何生成val的测评报告? 8、如何编写测试脚本测试测试集? 9、如何使用余弦退火策略调整学习率? 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/124845052
2022-05-19 12:05:33 996.96MB 分类 数据挖掘 人工智能 机器学习
官方说超越MobileNet v3的MixNet,使用混合尺度的Depthwise卷积,效果提升明显。本人对照pytorch版本实现的caffe版本,包括s和m两个版本。在200类ImageNet数据集上测试top1准确率为0.83。
2022-04-15 13:37:40 23KB MixNet
1
PyTorch图像模型 赞助商 非常感谢我的的支持! 除了以上链接的赞助商之外,我还从以下位置获得了硬件和/或云资源: 英伟达( ) TFRC( ) 我很幸运能够自己投入大量时间和金钱来支持这个项目和其他开源项目。 但是,随着项目范围的扩大,需要外部支持来继续当前的硬件,基础设施和电力成本轨迹。 什么是新的 2021年5月5日 从添加MLP-Mixer模型和端口预训练权重 从添加CaiT模型和预训练权重 从添加ResNet-RS模型和权重。 添加CoaT模型和权重。 感谢 为TResNet,MobileNet-V3,ViT模型添加新的ImageNet-21k权重和微调的权重。 谢谢 添加GhostNet模型和权重。 谢 更新ByoaNet注意模型 改进SA模块的初始化 将基于实验的独立Swin attn模块和swinnet 实验的一致“ 26t”模型定义。 添加改进的
2021-11-16 15:52:37 14.12MB pytorch resnet pretrained-models mixnet
1
PyTorch图像模型 赞助商 非常感谢我的的支持! 除了以上链接的赞助商之外,我还从以下位置获得了硬件和/或云资源: 英伟达( ) TFRC( ) 我很幸运能够自己投入大量时间和金钱来支持这个项目和其他开源项目。 但是,随着项目范围的扩大,需要外部支持来继续当前的硬件,基础设施和电力成本轨迹。 什么是新的 2021年5月5日 从添加MLP-Mixer模型和端口预训练权重 从添加CaiT模型和预训练权重 从添加ResNet-RS模型和权重。 添加CoaT模型和权重。 感谢 为TResNet,MobileNet-V3,ViT模型添加新的ImageNet-21k权重和微调的权重。 谢谢 添加GhostNet模型和权重。 谢 更新ByoaNet注意模型 改进SA模块的初始化 将基于实验的独立Swin attn模块和swinnet 实验的一致“ 26t”模型定义。 添加改进的E
2021-11-14 12:09:56 14.12MB pytorch resnet pretrained-models mixnet
1
PyTorch图像模型,脚本,预训练权重-(SE)ResNet / ResNeXT,DPN,EfficientNet,MixNet,MobileNet-V3 / V2 / V1,MNASNet,单路径NAS,FBNet等更多PyTorch图像模型等2020年11月11日,变更组合:DenseNet模型已更新,其中包括从Torchvision中提高了内存效率(修复了错误),模糊池和深茎添加,增加了VoVNet V1和V2模型,将39 V2变体(ese_vovnet_39b)训练为79.3 top-1激活工厂以及新的激活:选择在模型创建时执行操作,以便在使用与添加了脚本或跟踪(ONNX导出)hard_mish(实验性)兼容的激活时更加灵活
2021-10-20 22:21:41 14.13MB Python Deep Learning
1