工程流程 本文档实现了R-CNN算法进行目标检测的完整过程,包括 数据集创建 卷积神经网络训练 分类器训练 边界框回归器训练 目标检测器实现 本仓库最终实现一个汽车类别目标检测器 模块构成 区域建议生成:selectivesearch算法实现,生成类别独立的区域建议 特征提取:卷积神经网络AlexNet实现,从每个区域建议中提取固定长度的特征向量 线性SVM实现,输入特征向量,输出每类成绩 使用类指定的边界框回归器计算候选建议的坐标偏移 非最大抑制方法实现,得到最终的候选建议 关于区域建议算法selectivesearch实现,在训练阶段使用高质量模式,在测试阶段使用快速模式
2023-03-24 10:34:13 994.85MB pytorch实现R-CNN目标
1
使用BERT的越南语NER(bert-vn-ner) 由Trong-Dat Ngo编写的代码。 引言 BERT模型的Pytorch实现为越南语执行命名实体识别(NER)。 此外,单词中的特征也用于表示单词。 该系统使用预训练模型 安装 要求: Python 3.6+ 火炬1.4+ 安装依赖项: pip3 install -r requirements.txt 数据集格式 bert-vn-ner的输入数据格式遵循CoNLL-2003格式,其中四列由制表符分隔,包括word , pos , chunk和named实体。 每个单词都放在单独的行上,每个句子后面都有一个空行。 请注意,分词不用于匹配BERT的预训练(以bert-base-multilingual-cased表示) 。 有关详细信息,请参见“数据”目录中的样本数据。 下表描述了数据集中的越南语例句示例。 单词 销售点
2023-03-23 21:36:36 710KB tagging named-entity-recognition ner bert
1
PyTorch主动学习 常见的主动学习方法库包括: 环环相扣的机器学习罗伯特·蒙罗(Robert Munro) 曼宁出版物 该代码是独立的,可以与本书一起使用。 库中的主动学习方法 该代码当前包含用于以下目的的方法: 最低置信度抽样 置信度抽样 置信度采样率 熵(分类熵) 基于模型的离群抽样 基于聚类的采样 代表性抽样 自适应代表性抽样 主动转移学习以进行不确定性采样 主动转移学习以进行代表性抽样 自适应采样的主动转移学习(ATLAS) 本书介绍了如何在计算机视觉和自然语言处理中将它们独立地,组合地应用以及用于不同的用例。 它还涵盖了针对现实世界多样性进行抽样以避免偏见的策略。 安装: 如果您克隆此仓库并且已经安装了PyTorch,则应该能够立即开始: git clone https://github.com/rmunro/pytorch_active_learning cd
2023-03-23 14:58:22 22.68MB Python
1
可训练的Event2视频模型(UnetStyle) 原始实现。 官方文件 去做: 合成数据? 变压器模块(SeTR)? 任意时间线推断生成? 快速数据加载器 笔记 确保解压任何数据集./data,他们有images.txt,events.txt和图像文件夹,良好的开端是。 解压缩。
2023-03-22 20:18:13 5.77MB Python
1
本项目通过textcnn卷积神经网络实现对文本情感分析识别,由python 3.6.5+Pytorch训练所得。
2023-03-22 16:44:42 289KB pytorch python 文本分类 情感分析
1
火炬损失 我实现的标签平滑,amsoftmax,焦点损耗,双焦点损耗,三重态损耗,giou损耗,亲和力损耗,pc_softmax_cross_entropy,ohem损耗(基于行硬挖掘损失的softmax),大利润- softmax(bmvc2019),lovasz-softmax-loss和dice-loss(广义的软骰子损失和批处理软骰子损失)。 也许这对我的未来工作很有用。 还尝试实现swish,hard-swish(hswish)和mish激活功能。 此外,添加了基于cuda的一键式功能(支持标签平滑)。 新添加一个“指数移动平均线(EMA)”运算符。 添加卷积运算,例如coord-conv2d和dynamic-conv2d(dy-conv2d)。 一些运算符是使用pytorch cuda扩展实现的,因此您需要先对其进行编译: $ python setup.py
2023-03-21 11:04:16 93KB cuda pytorch ema triplet-loss
1
Chinese-Text-Classification-Pytorch-master。 数据齐全,说明文档详细。点击即用! # 训练并测试: # TextCNN python run.py --model TextCNN # TextRNN python run.py --model TextRNN # TextRNN_Att python run.py --model TextRNN_Att # TextRCNN python run.py --model TextRCNN # FastText, embedding层是随机初始化的 python run.py --model FastText --embedding random # DPCNN python run.py --model DPCNN # Transformer python run.py --model Transformer
2023-03-20 10:32:05 15.94MB Chinese-Text-Cla
1
pytorch图注意网络 这是Veličković等人提出的图注意力网络(GAT)模型的火炬实施。 (2017, )。 回购协议最初是从分叉的。 有关GAT(Tensorflow)的官方存储库,请访问 。 因此,如果您在研究中利用pyGAT模型,请引用以下内容: @article{ velickovic2018graph, title="{Graph Attention Networks}", author={Veli{\v{c}}kovi{\'{c}}, Petar and Cucurull, Guillem and Casanova, Arantxa and Romero, Adriana and Li{\`{o}}, Pietro and Bengio, Yoshua}, journal={International Conference on Learning
1
用于pytorch的图像分类,包含多种模型方法,比如AlexNet,VGG,GoogleNet,ResNet,DenseNet等等,包含可完整运行的代码。除此之外,也有colab的在线运行代码,可以直接在colab在线运行查看结果。
2023-03-19 18:08:07 88.76MB pytorch pytorch AlexNet
1
torch-1.8.0-cp38-cp38-manylinux1_x86_64.whl
2023-03-19 16:40:13 701.45MB torch pytorch
1