PyTorch 官方教程 Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you—and your deep learning skills—become more sophisticated. Deep Learning with PyTorch will make that journey engaging and fun.
2023-03-31 20:34:28 14.55MB PyTorch
1
Neural IMage Assessment的一个PyTorch实现
2023-03-31 18:35:25 8KB Python开发-机器学习
1
天池农业比赛代码,可借鉴deeplab。
2023-03-31 14:02:26 127KB tianchi
1
基于 Pytorchet GoogLeNet 的图像分类实战 完整代码 数据 可直接运行 CIFAR-10分类
2023-03-31 01:21:12 999KB pytorch pytorch 软件/插件 CIFAR-10分类
1
图像分割u-net网络代码,基于pytorch
2023-03-30 19:46:36 13.01MB 网络 网络 软件/插件
1
softmax_variants softmax变体的各种损失函数:中心损失,余面损失,高边距高斯混合,由pytorch 0.3.1实现的COCOLoss 训练数据集是MNIST 您可以直接运行代码train_mnist_xxx.py重现结果 参考文件如下: 中锋失利:温彦东,张凯鹏,李志峰和乔巧。 一种用于深度人脸识别的判别性特征学习方法。 ECCV 2016 Cosface损失:王浩,王一彤,周正,邢吉,狄宏恭,周静超,李志峰和刘伟。 CosFace:用于深脸识别的大余量余弦损失。 CVPR2018 大幅度高斯混合损失:万维涛,钟元仪,李天鹏,陈建生。 重新考虑图像分类中损失函数的特征分布。 CVPR 2018 COSO损失:刘宇,李洪阳,王小刚。 重新思考特征识别和聚合,以进行大规模识别。 NIPS研讨会2017 学到的二维嵌入功能包括: softmax损失 可可
2023-03-30 16:54:29 619KB deep-learning Python
1
利用coco2017数据集训练Fast-RCNN模型(训练过程详细步骤记录): (1)检测数据集利用选择搜索算法(selective-search)生成一定数量的候选框, (2)将候选框与真实标注框进行IOU(交并比)计算,将真是标注框的作为正样本,将0.1
2023-03-28 09:26:27 509.47MB pytorch 目标检测 Fast_RCNN
1
四种天气图片数据分类(pytorch
2023-03-26 10:35:06 426.67MB pytorch pytorch 多分类
1
代码已经调通,跑出来的效果如下: # coding=gbk import torch import matplotlib.pyplot as plt from torch.autograd import Variable import torch.nn.functional as F ''' Pytorch是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构建是张量,所以可以把PyTorch当做Numpy 来用,Pytorch的很多操作好比Numpy都是类似的,但是其能够在GPU上运行,所以有着比Numpy快很多倍的速度。 训练完了,发现隐层越大,拟合的速度越是快,拟合的效果越
2023-03-26 10:11:02 64KB c OR python神经网络
1
史上最全猫狗二分类、以pytorch为基础的猫狗二分类、预测准确率超高的猫狗二分类、软件工程必看
2023-03-24 15:00:32 74.59MB pytorch pytorch 软件工程 k12
1