2048健身房 该存储库是一个有关使用DQN(Q-Learning)玩2048游戏并使用加速和加速环境的。使用的算法来自“ ,环境是自定义的 env。该环境包含两种类型的电路板表示形式:二进制和无二进制。第一个使用幂二矩阵来表示电路板的每个图块。相反,没有二进制文件使用原始矩阵板。 该模型使用两种不同类型的神经网络:CNN(卷积神经网络),MLP(多层感知器)。使用CNN作为特征提取器比使用MLP更好。可能是因为CNN可以提取空间特征。结果,代理在1000个已玩游戏的10%中获得2048个图块。 奥图纳 Optuna是一个自动超参数优化软件框架,专门为机器学习而设计。它具有命令式,按运行定义样式的用户API。多亏了我们的运行定义API,用Optuna编写的代码具有高度的模块化,并且Optuna的用户可以动态构造超参数的搜索空间。 还有就是如何使用这个库指南。 Numba 是一种开源JI
1
模糊和清晰的图像分类 分类模糊和清晰的图像 介绍 在日常生活中,由于聚焦不佳,帧中物体的运动或在捕获图像时的握手运动,我们会遇到从相机单击的不良图像。 Blur is typically the thing which **suppress the high-frequency** of our Images, therefore can be detected by using various low-pass filter eg. Laplacian Filter. 作为一个聪明的人(我自己是CS人士),我们不想手动过滤掉清晰和模糊的图像,因此我们需要一些聪明的方法来删除不必要的图像。 LoG筛选器 我还应用了高斯( )滤波器的拉普拉斯算子来检测模糊图像,但是很难找到区分图像所需的阈值的确切值。 尽管结果并不令人着迷。 使用方差 一些讨论 LoG参考: 在Python中实现
1
高中位数 您是否知道没有数学方法将的概念扩展到更高维度的独特方法? 高维中位数存在各种定义,并且此Python软件包提供了这些定义的许多快速实现。 中值因其高的击穿点(高达50%的污染)而非常有用,并且在机器学习,计算机视觉和高维统计中有许多不错的应用。 该软件包当前具有和实现,并支持使用NaN丢失数据。 安装 软件包的最新版本始终在可用,因此可以通过键入以下命令轻松安装: pip3 install hdmedians 类固醇 给定一个有限集 的 维观测向量 ,类 这些观察结果由 medoid的当前实现是在矢量化Python中实现的,可以处理支持的任何数据类型。 如果您希望算法处理编码为nan的缺失值,则可以使用nanmedoid函数。 例子 创建一个6 x 10的随机整数观测值数组。 >>> import numpy as np >>> X = np.random.randin
1
保险行业语料库 大家称为 看了下您的项目,我觉得这份数据可以用于保险领域的中文问答研究,对于某些问题的翻译很准确,长度扩展的答案翻译就有些不连贯的问题,大体上关键字信息和-华东师范大学 优秀作品! - ,中国东部师范大学 绝对 基线模型 最小批量大小= 100,hidden_​​layers = [100,50],lr = 0.0001。 纪元25,总步数36400,精度0.9031,成本1.056221。 滴水 Python3 + pip install -r Requirements.txt 跑 一个非常简单的网络作为基准模型。 python3 deep_qa_1/network
1
AI可解释性360(v0.2.1) AI Explainability 360工具箱是一个开放源代码库,支持数据集和机器学习模型的可解释性和可解释性。 AI Explainability 360 Python软件包包括一套全面的算法,这些算法涵盖了解释的不同维度以及代理的可解释性指标。 通过逐步介绍不同消费者角色的示例用例,对概念和功能进行了简要介绍。 提供了更深入的,面向数据科学家的介绍。 完整的API也可用。 没有一种最能解释问题的方法。 有很多解释方法:数据与模型,直接可解释与事后解释,本地与全局解释等,因此弄清楚哪种算法最适合给定用例可能会造成混淆。 为了帮助您,我们创建了一些和
1
机器学习工具箱 主程序可以对数据应用几种监督分类方法: Logistic回归(线性模型) 支持向量机 装袋 随机森林 神经网络 可以使用其他一些工具,例如Boosting,K均值,线性回归。 该程序使用不同的外部工具箱: Prtools套袋和随机森林 用于神经网络的DeepLearnToolbox-master 适用于SVM的libsvm-3.20 此外,一些代码来自Andrew Ng的Coursera MOOC:。
2022-11-04 17:00:36 2.25MB MATLAB
1
在复习《机器学习》时,个人总结的一点复习资料。后续如果还总结的话,也考虑传一下。
2022-11-02 19:00:37 1.03MB 机器学习 期末考试 MachineLearning 研究生
Jupyter模板 Jupyter笔记本的简单模板。 该扩展程序可以使用常规模板和通用模板设置任何新的Jupyter Notebook,以进行数据科学分析。 该模板包括常规部分,如数据导入,处理和参考,以及执行常见操作(如导入和配置图表库)的代码。 此外,每当您尝试保存一个名为“无标题”的笔记本时,它都会提示您输入有意义的名称。 觉得这个烦人吗? 不用担心,您可以禁用此功能。 动机 Jupyter笔记本是很棒的工具:它们可实现快速原型设计并简化结果共享。 但是,由于它们的灵活性,它们容易被滥用。 为了帮助数据科学家保持笔记本电脑的清洁,合理灵活但常规的模板可能会有所帮助。 此外,模板还是一种生产力工具,可加快常用设置(例如库导入和配置)的速度。 快速开始 我们假设您的环境中已经安装了Jupyter笔记本电脑。 但是,即使不是这种情况,也不必担心:jupytemplate将Jup
2022-10-31 23:23:28 6.28MB template data-science machine-learning jupyter
1
sklearn-matlab:使用scikit-learn语法在Matlab中进行机器学习
1
forestError:随机森林预测误差估计的统一框架 1.0.0版更新 该软件包已更新,以反映偏差的常规征兆(平均预测减去平均响应)。 该软件包的早期版本返回负偏差(平均响应减去均值预测)。 因此,必须颠倒涉及此程序包输出的任何偏差的代数运算的符号,以保持其预期的效果。 概述 forestError软件包使用Lu和Hardin(2021)中引入的插件方法为随机森林预测估算条件均方预测误差,条件偏差,条件预测间隔和条件误差分布。 这些估计值取决于测试观测值的预测值,并考虑可能的响应异质性,随机森林预测偏差以及整个预测器空间中的随机森林预测变异性。 在当前状态下,此程序包中的main函数接受使用以下任何程序包构建的回归随机森林: randomForest , randomForestSRC , ranger ,和 quantregForest 。 安装 在R运行以下代码行将从CRAN
2022-10-29 10:33:56 93KB machine-learning r statistics random-forest
1