Machine_Learning_Code:《统计学习方法》与常见机器学习模型(GBDTXGBoostlightGBMFMFFM)的原理讲解与python和类库实现

上传者: 42131861 | 上传时间: 2022-12-01 00:43:17 | 文件大小: 23.05MB | 文件类型: ZIP
机器学习模型的python与类库实现 本repo以李航博士的《统计学习方法》为路线,逐章讲解并实现其中所有的算法;从而,再加上常用的机器学习模型,例如GBDT,XGBoost,Light GBM,FM,FFM等,力争将传统的机器学习方法能够融汇互换 :party_popper: 。 统计学习方法|感知机模型 模型理论讲解: 模型代码实现: , 统计学习方法| K近邻 模型理论讲解: 模型代码实现: , 统计学习方法|朴素贝叶斯 模型理论讲解: 模型代码实现: , 统计学习方法|决策树 模型理论讲解: 模型代码实现: , 统计学习方法| logistic回归 模型理论讲解: 模型代码实现: , 机器学习| softmax 模型理论 模型代码实现: 统计学习方法|最大熵模型 模型理论讲解: 模型代码实现: 统计学习方法|支持向量机 模型理论讲解: 模型代码实现: , 统计学习方法|

文件下载

资源详情

[{"title":"( 26 个子文件 23.05MB ) Machine_Learning_Code:《统计学习方法》与常见机器学习模型(GBDTXGBoostlightGBMFMFFM)的原理讲解与python和类库实现","children":[{"title":"Machine_Learning_Code-master","children":[{"title":"Decision_Tree","children":[{"title":"decision_tree_python.py <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false},{"title":"decision_tree_sklearn.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"perceptron","children":[{"title":"perceptron_python.py <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false},{"title":"perceptron_sklearn.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"SVM","children":[{"title":"SVM_sklearn.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"SVM_python.py <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"xgboost","children":[{"title":"xgb.model <span style='color:#111;'> 57.36KB </span>","children":null,"spread":false},{"title":"xgboost_mnist.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"softmax","children":[{"title":"softmax_python.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.15KB </span>","children":null,"spread":false},{"title":"CRF","children":[{"title":"model.pkl <span style='color:#111;'> 5.57MB </span>","children":null,"spread":false},{"title":"1980_01.txt <span style='color:#111;'> 10.18MB </span>","children":null,"spread":false},{"title":"result-rmrb.txt <span style='color:#111;'> 9.21MB </span>","children":null,"spread":false},{"title":"CRF_python.py <span style='color:#111;'> 4.59KB </span>","children":null,"spread":false},{"title":"CRF_sklearn.py <span style='color:#111;'> 11.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"MaxEnt","children":[{"title":"Max_Entropy.py <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"logistic_regression_scikit-learn.py <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"logistic_regression_python.py <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"KNN","children":[{"title":"KNN_sklearn.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"KNN_python.py <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"HMM","children":[{"title":"HMM_hmmlearn.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"HMM_python.py <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"Naive_Bayes","children":[{"title":"Naive_Bayes_sklearn.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"Naive_Bayes_python.py <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"MnistData","children":[{"title":"mnist_test.csv.zip <span style='color:#111;'> 2.11MB </span>","children":null,"spread":false},{"title":"mnist_train.csv.zip <span style='color:#111;'> 12.67MB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明