[{"title":"( 26 个子文件 23.05MB ) Machine_Learning_Code:《统计学习方法》与常见机器学习模型(GBDTXGBoostlightGBMFMFFM)的原理讲解与python和类库实现","children":[{"title":"Machine_Learning_Code-master","children":[{"title":"Decision_Tree","children":[{"title":"decision_tree_python.py <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false},{"title":"decision_tree_sklearn.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"perceptron","children":[{"title":"perceptron_python.py <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false},{"title":"perceptron_sklearn.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"SVM","children":[{"title":"SVM_sklearn.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"SVM_python.py <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"xgboost","children":[{"title":"xgb.model <span style='color:#111;'> 57.36KB </span>","children":null,"spread":false},{"title":"xgboost_mnist.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"softmax","children":[{"title":"softmax_python.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.15KB </span>","children":null,"spread":false},{"title":"CRF","children":[{"title":"model.pkl <span style='color:#111;'> 5.57MB </span>","children":null,"spread":false},{"title":"1980_01.txt <span style='color:#111;'> 10.18MB </span>","children":null,"spread":false},{"title":"result-rmrb.txt <span style='color:#111;'> 9.21MB </span>","children":null,"spread":false},{"title":"CRF_python.py <span style='color:#111;'> 4.59KB </span>","children":null,"spread":false},{"title":"CRF_sklearn.py <span style='color:#111;'> 11.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"MaxEnt","children":[{"title":"Max_Entropy.py <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"logistic_regression_scikit-learn.py <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"logistic_regression_python.py <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"KNN","children":[{"title":"KNN_sklearn.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"KNN_python.py <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"HMM","children":[{"title":"HMM_hmmlearn.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"HMM_python.py <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"Naive_Bayes","children":[{"title":"Naive_Bayes_sklearn.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"Naive_Bayes_python.py <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"MnistData","children":[{"title":"mnist_test.csv.zip <span style='color:#111;'> 2.11MB </span>","children":null,"spread":false},{"title":"mnist_train.csv.zip <span style='color:#111;'> 12.67MB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]