attention mechanisms with tensorflow
2021-03-29 19:14:05 2.1MB tensorflow
1
B站讲解视频的PPT https://www.bilibili.com/video/BV1SA41147uA/
1
汇总了自Non-local和SENet之后的十几篇发表于CVPR/ICCV的经典的注意力方法,包括cbam、a2net、psanet、danet、apcnet、sknet、ccnet、gcnet、annnet、ocrnet、sanet、ecanet
2021-03-22 14:42:33 5.84MB attention 注意力机制 语义分割
1
【自然语言处理】文本分类模型_BiLSTM+Attention_TensorFlow实现,是该博客https://blog.csdn.net/bqw18744018044/article/details/89334729的数据集,可能有点错误,请谨慎使用
2021-03-18 21:41:39 25.57MB 文本分类数据集
1
翻译Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector_202
2021-03-18 21:07:10 1.16MB 目标检测,小样本,
1
PPT分享Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
2021-03-18 21:07:10 4.14MB 小样本目标检测
1
我可以请你注意吗? 建议在科学文献中的作用
2021-03-17 15:12:22 72KB TeX
1
实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加权的特征向量来替换原有的特征向量进行残差融合,同时添加二阶项来减少融合过程中的信息损失并加速模型收敛。通过在COCO和PASCAL VOC数据集上的实验表明,该算法有效降低了边界框的定位误差并提升了检测精度。相比YOLOv3算法在COCO测试集上的mAP@IoU[0.5:0.95]提升了最高2.5 mAP,在PASCAL VOC 2007测试集上达到了最高81.9 mAP。
2021-03-16 15:59:19 1.39MB 论文研究
1
总结文档
2021-03-11 16:02:14 2.61MB 注意力模型 总结 论文总结
1
Tensorflow 2 DA-RNN 的Tensorflow 2(Keras)实现, 论文: : 安装 pip install da-rnn 用法 from da_rnn import ( DARNN ) model = DARNN ( 10 , 64 , 64 ) y_hat = model ( inputs ) Python Docstring符号 在此项目的方法的文档字符串中,我们具有以下表示法约定: variable_{subscript}__{superscript} 例如: y_T__i表示 ,在时间T第i个预测值。 alpha_t__k表示 ,注意权重在时间t测量第k个输入特征(驾驶序列)的重要性。 DARNN(T,m,p,y_dim = 1) 以下(超级)参数的命名与本文一致,但本文未提及的y_dim除外。 T int窗口的长度(时间步长) m in
1