基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。 这段程序主要是一个基于CNN-LSTM-Attention神经网络的预测模型。下面我将逐步解释程序的功能和运行过程。 1. 导入所需的库: - matplotlib.pyplot:用于绘图 - pandas.DataFrame和pandas.concat:用于数据处理 - sklearn.preprocessing.MinMaxScaler:用于数据归一化 - sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能 - keras:用于构建神经网络模型 - numpy:用于数值计算 - math.sqrt:用于计算平方根 - attention:自定义的注意力机制模块 2. 定义一个函数mae_value(y_true, y_pred)用于计
2024-10-31 10:13:17 288KB 网络 网络 lstm
1
CNN-LSTM-Attention分类,基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)分类预测 MATLAB语言(要求2020版本以上) 中文注释清楚 非常适合科研小白,替数据集就可以直接使用 多特征输入单输出的二分类及多分类模型。 预测结果图像:迭代优化图,混淆矩阵图等图如下所示
2024-10-10 09:56:10 191KB
1
CNN-LSTM-Attention基于卷积-长短期记忆神经网络结合注意力机制的数据分类预测 Matlab语言 程序已调试好,无需更改代码直接替换Excel即可运行 1.多特征输入,LSTM也可以换成GRU、BiLSTM,Matlab版本要在2020B及以上。 2.特点: [1]卷积神经网络 (CNN):捕捉数据中的局部模式和特征。 [2]长短期记忆网络 (LSTM):处理数据捕捉长期依赖关系。 [3]注意力机制:为模型提供了对关键信息的聚焦能力,从而提高预测的准确度。 3.直接替换Excel数据即可用,注释清晰,适合新手小白 4.附赠测试数据,输入格式如图3所示,可直接运行 5.仅包含模型代码 6.模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果
2024-09-12 10:58:49 171KB lstm 神经网络 matlab
1
基于注意力机制attention结合长短期记忆网络LSTM多维时间序列预测,LSTM-Attention回归预测,多输入单输出模型。 运行环境MATLAB版本为2020b及其以上。 评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高,方便学习和替换数据。
2024-07-26 16:22:44 63KB 网络 网络 matlab lstm
1
基于卷积神经网络-门控循环单元结合注意力机制(CNN-GRU-Attention)多变量时间序列预测,CNN-GRU-Attention多维时间序列预测,多列变量输入模型。matlab代码,2020版本及以上。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-07-08 15:12:17 62KB matlab
1
MCA: Multidimensional collaborative attention in deep convolutional neural networks for image recognition MCA:用于图像识别的深度卷积神经网络中的多维协作注意力
2024-05-07 19:17:45 4.1MB 深度学习 人工智能
1
本文深入探讨了如何利用深度学习技术对Python程序进行预测。我们将重点介绍CNN-GRU-Attention模型,这是一种结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制的先进模型。文章将从模型的理论基础出发,逐步引导读者理解其工作原理,并提供实际的代码示例,展示如何在Python中实现这一模型。内容适合对深度学习和自然语言处理有一定了解的开发者,以及对使用机器学习技术进行代码预测感兴趣的研究人员。 适用人群: - 机器学习工程师 - 数据科学家 - Python开发者 - 自然语言处理研究人员 使用场景: - 代码自动补全和预测 - 程序错误检测和调试 - 软件开发中的智能辅助工具 关键词 深度学习
2024-05-03 16:50:27 1.37MB python
1
Attention注意力机制,在传统的CNN模型和transform模型中均广泛使用。本文就主要对基于transform的注意力机制进行展开: 1. Attention是什么 2. Attention为什么要引入到语音领域 3. Attention的优点 4. transform与CNN的对比
2024-04-21 11:34:14 1.52MB transform attention
1
pytorch搭建CNN+LSTM+Attention网络实现行车速度预测项目代码加数据,适合初学者,代码结构清晰
2024-04-09 21:08:55 1.19MB pytorch pytorch 网络 网络
1
使用卷积加循环神经网络加注意力机制进行时间序列预测。 适用于不懂时间序列预测流程的研究小白,使用这个资源能够很好的理解时间序列预测的整个流程。熟悉数据在网络中的形状变换。代码拿来修改一下数据集路径和些许参数即可运行。
2024-04-08 09:17:32 425KB lstm 数据集
1