循环神经网络 神经网络的实现
2023-03-08 23:30:11 58KB Java
1
基于python lstm flask 搭建的豆瓣电影推荐系统. 完整代码+论文 +ppt 毕业设计基于python lstm flask 搭建的豆瓣电影推荐系统. 完整代码+论文 +ppt 毕业设计基于python lstm flask 搭建的豆瓣电影推荐系统. 完整代码+论文 +ppt 毕业设计
2023-03-07 15:34:21 122.02MB python lstm flask 电影推荐系统
1
matlab bp神经网络激活函数的代码DeepLearning_BP_5 bp算法lab5音频识别 实验5-手写数字到语音转换器 信息 课程:了解深度神经网络 老师:张艺 学生: ID: 档案文件 lab5.m该实验主要过程的MATLAB代码文件。 fc.m用于前馈计算的MATLAB代码文件。 bc.m用于向后计算的MATLAB代码文件 mnist_small_matlab.mat手写数字数据集的MATLAB数据文件 audio/[0-9].wav数字标准音频的WAVE文件 指示 在fc.m和bc.m实现前向计算和后向计算。 您可以根据程序需要更改界面。 例如,您可能希望传递一个函数句柄以指定激活函数。 该过程与实验4相似。您可以整体或部分输入图像。 目标从数字标签更改为音频波。 而且您现在还没有准确性。 音频波是浮点小数的序列,范围为[-1,1]。 我们已将每个音频剪切为相同的长度(2983)。 音频文件的采样率为4000。 您可以在MATLAB中使用audioread()来读取音频文件。 您可以在MATLAB中使用soundsc()播放音频波。 有关这些功能的更多详细信息,请参见
2023-03-07 14:57:29 10.04MB 系统开源
1
情感是音乐最重要的语义信息,音乐情感分类广泛应用于音乐检索,音乐推荐和音乐治疗等领域.传统的音乐情感分类大都是基于音频的,但基于现在的技术水平,很难从音频中提取出语义相关的音频特征.歌词文本中蕴含着一些情感信息,结合歌词进行音乐情感分类可以进一步提高分类性能.本文将面向中文歌词进行研究,构建一部合理的音乐情感词典是歌词情感分析的前提和基础,因此基于Word2Vec构建音乐领域的中文情感词典,并基于情感词加权和词性进行中文音乐情感分析.本文首先以VA情感模型为基础构建情感词表,采用Word2Vec中词语相似度计算的思想扩展情感词表,构建中文音乐情感词典,词典中包含每个词的情感类别和情感权值.然后,依照该词典获取情感词权值,构建基于TF-IDF (Term Frequency-Inverse Document Frequency)和词性的歌词文本的特征向量,最终实现音乐情感分类.实验结果表明所构建的音乐情感词典更适用于音乐领域,同时在构造特征向量时考虑词性的影响也可以提高准确率.
1
对下载的IMDB数据集中的test和train分别进行预处理从而方便后续模型训练,代码为PreProcess.py。预处理主要包括:大小写转化、特殊字符处理、stopwords过滤、分词,最后将处理后的数据存储为CSV格式,以方便后续调试。借用了nltk的 stopwords 集,用来将像 i, you, is 之类的对分类效果基本没影响但出现频率比较高的词,从训练集中清除。
2023-03-01 16:29:27 1KB pytorch RNN lstm 情感分类
1
# 多变量股价预测-LSTM 训练集时间范围:2001-01-25到2021-09-29,预测目标列为Open import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout import pandas as pd from matplotlib import pyplot as plt from sklearn.preprocessing import MinMaxScaler import seaborn as sns from sklearn.model_selection import train_test_split
2023-02-28 01:06:36 128KB LSTM
1
关系分类是自然语言处理领域的一项重要任务,能够为知识图谱的构建、问答系统和信息检索等提供技术支持.与传统关系分类方法相比较,基于神经网络和注意力机制的关系分类模型在各种关系分类任务中都获得了更出色的表现.以往的模型大多采用单层注意力机制,特征表达相对单一.因此本文在已有研究基础上,引入多头注意力机制(Multi-head attention),旨在让模型从不同表示空间上获取关于句子更多层面的信息,提高模型的特征表达能力.同时在现有的词向量和位置向量作为网络输入的基础上,进一步引入依存句法特征和相对核心谓词依赖特征,其中依存句法特征包括当前词的依存关系值和所依赖的父节点位置,从而使模型进一步获取更多的文本句法信息.在SemEval-2010任务8数据集上的实验结果证明,该方法相较之前的深度学习模型,性能有进一步提高.
2023-02-27 17:05:50 981KB 关系分类 Bi-LSTM 句法特征 self-attention
1
matlab心电图程序代码基于呼吸暂停-心电图的OSA检测代码 该项目包括用于呼吸暂停ECG的预处理方法和用于每段OSA检测的LSTM-RNN模型。 介绍 如果要使用此程序,应首先下载Apnea-ecg数据库。 在这里,我们提供了一个下载链接,代码为:8fuq。 用法 然后,按照以下步骤操作,您将获得OSA检测模型。 在python中使用matlab函数。 遵循官方文件。 运行preprocessOfApneaECG.mit2Segments.py 。 此python文件将Apnea-ECG数据库转换为每分钟的ECG段,包括训练集(a01-a20,b01-b05,c01-c10)和测试集(x01-x35)。 不要忘记在mit2Segments.py中设置路径信息。 运行preprocessOfApneaECG.preProcessing.py 。 该python文件处理每分钟的ECG片段,包括ECG去噪,从ECG提取RRI,RAMP和EDR信号,在RRI和RAMP上进行平滑和样条插值以及对EDR信号进行下采样。 此外,我们根据RRI将这些细分分为两种:噪声和清晰。 运行produceD
2023-02-25 22:07:26 363.93MB 系统开源
1
1.基于RNN的神经网络 2.对于“记忆”的进一步优化 3.”门“结构 1.一些准备工作 2.搭建LSTM单元 3.运行测试
2023-02-25 08:55:06 358KB
1
doc2vec 该存储库包含Python脚本,用于使用训练doc2vec模型。 有关doc2vec算法的详细信息,请参见论文。 创建一个DeWiki数据集 Doc2vec是一种无监督的学习算法,并且可以使用任何文档集来训练模型。 文档可以是简短的140个字符的推文,单个段落(如文章摘要,新闻文章或书籍)中的任何内容。 对于德国人来说,一个好的基线是使用训练模型。 下载最新的DeWiki转储: wget http://download.wikimedia.org/dewiki/latest/dewiki-latest-pages-articles.xml.bz2 提取内容: wget http://medialab.di.unipi.it/Project/SemaWiki/Tools/WikiExtractor.py python WikiExtractor.py -c -b 2
2023-02-22 15:58:08 199KB nlp machine-learning word2vec doc2vec
1