针对中文命名实体识别(NER),采用IDCNN+CRF的方法。
2021-05-16 17:33:04 331KB NER NLP
1
LSTM-CNNs-CRF模型,论文《End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF》的复现
2021-05-13 16:06:46 15.12MB LSTM CNN CRF 深度学习
1
命名实体识别代码,解压即可用 # BERT-BiLSTM-CRF BERT-BiLSTM-CRF的Keras版实现 ## BERT配置 1. 首先需要下载Pre-trained的BERT模型,本文用的是Google开源的中文BERT模型: - https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip 2. 安装BERT客户端和服务器 pip install bert-serving-server pip install bert-serving-client,源项目如下: - https://github.com/hanxiao/bert-as-service 3. 打开服务器,在BERT根目录下,打开终端,输入命令: - bert-serving-start -pooling_strategy NONE -max_seq_len 144 -mask_cls_sep -model_dir chinese_L-12_H-768_A-12/ -num_worker 1
2021-05-10 11:42:36 883KB 文本分类
1
中文分词 本项目为中文分词任务baseline的代码实现,模型包括 BiLSTM-CRF 基于BERT的+ X(softmax / CRF / BiLSTM + CRF) 罗伯塔+ X(softmax / CRF / BiLSTM + CRF) 本项目是的项目。 数据集 数据集第二届中文分词任务中的北京大学数据集。 模型 本项目实现了中文分词任务的baseline模型,对应路径分别为: BiLSTM-CRF BERT-Softmax BERT-CRF BERT-LSTM-CRF 其中,根据使用的预训练模型的不同,BERT-base-X模型可转换为Roberta-X模型。 要求 此仓库已在Python 3.6+和PyTorch 1.5.1上进行了测试。 主要要求是: tqdm scikit学习 火炬> = 1.5.1 :hugging_face: 变压器== 2.2.2 要解决环境问题,请运行:
1
用于视频的压缩和转档(转换格式),类似于格式工厂的功能
2021-05-05 09:05:48 197.09MB 视频转档 视频压缩
1
除了crf+ngram这种基于统计纠错的方法外还有一种基于深度学习的seq2seq方法,有简单的注释,有训练集和测试集数据,属于很基础的模型。
2021-05-03 09:01:48 4.54MB nlp crf ngram
1
用于中文命名实体识别的简单BiLSTM-CRF模型 该存储库包含用于为中文命名实体识别任务构建非常简单的基于字符的BiLSTM-CRF序列标签模型的代码。 其目标是识别三种类型的命名实体:PERSON,LOCATION和ORGANIZATION。 这段代码可在Python 3和TensorFlow 1.2上运行,以下存储库给了我很多帮助。 模型 此模型类似于论文[1]和[2]提供的模型。 其结构如下图所示: 对于一个中文句子,该句子中的每个字符都有/将具有属于{O,B-PER,I-PER,B-LOC,I-LOC,B-ORG,I-ORG}集的标记。 第一层是查找层,旨在将每个字符表示从一个
1
SqueezeSeg点云目标识别的翻译版,虽然还存在一些翻译上的细节,但是相对于英文好多了。
2021-04-22 23:54:34 1.85MB 点云目标识别 深度学习 目标检测
1
BERT只是一个预训练的语言模型,在各大任务上都刷新了榜单。我们本次实验的任务也是一个序列标注问题,简而言之,就是是基于BERT预训练模型,在中文NER(Named Entity Recognition,命名实体识别)任务上进行fine-tune。 Fine-tune是什么意思,中文译为微调。在transfer learning中,对事先训练好的特征抽取网络,直接拿来用在下游任务上。固定其特征抽取层的网络参数,只在原有的网络上增加少量神经元,做最后的分类任务,而且只更新分类参数。
2021-04-20 19:51:43 479KB nlp bert
1
注意: 该软件包已停止更新,请参阅我们的新 参考: 纸: 用于命名实体识别的神经架构通过BLSTM-CNN-CRF进行端到端序列标记码: 用法: python train.py 性能 f1 91.00%
1