BERT-BiLSTM-CRF-NER-master.zip

上传者: u010177412 | 上传时间: 2021-04-20 19:51:43 | 文件大小: 479KB | 文件类型: ZIP
BERT只是一个预训练的语言模型,在各大任务上都刷新了榜单。我们本次实验的任务也是一个序列标注问题,简而言之,就是是基于BERT预训练模型,在中文NER(Named Entity Recognition,命名实体识别)任务上进行fine-tune。 Fine-tune是什么意思,中文译为微调。在transfer learning中,对事先训练好的特征抽取网络,直接拿来用在下游任务上。固定其特征抽取层的网络参数,只在原有的网络上增加少量神经元,做最后的分类任务,而且只更新分类参数。

文件下载

资源详情

[{"title":"( 54 个子文件 479KB ) BERT-BiLSTM-CRF-NER-master.zip","children":[{"title":"BERT-BiLSTM-CRF-NER-master","children":[{"title":"setup.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"terminal_predict.py <span style='color:#111;'> 11.24KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"requirement.txt <span style='color:#111;'> 346B </span>","children":null,"spread":false},{"title":"data_process.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"pictures","children":[{"title":"service_1.png <span style='color:#111;'> 65.43KB </span>","children":null,"spread":false},{"title":"predict.png <span style='color:#111;'> 74.78KB </span>","children":null,"spread":false},{"title":"server_help.png <span style='color:#111;'> 14.95KB </span>","children":null,"spread":false},{"title":"service_2.png <span style='color:#111;'> 118.11KB </span>","children":null,"spread":false},{"title":"03E18A6A9C16082CF22A9E8837F7E35F.png <span style='color:#111;'> 6.14KB </span>","children":null,"spread":false},{"title":"text_class_rst.png <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false},{"title":"server_ner_rst.png <span style='color:#111;'> 11.63KB </span>","children":null,"spread":false},{"title":"server_run.png <span style='color:#111;'> 30.71KB </span>","children":null,"spread":false},{"title":"ner_help.png <span style='color:#111;'> 14.78KB </span>","children":null,"spread":false},{"title":"picture1.png <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"picture2.png <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 16.99KB </span>","children":null,"spread":false},{"title":"client_test.py <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false},{"title":"bert_base","children":[{"title":"client","children":[{"title":"__init__.py <span style='color:#111;'> 18.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"bert","children":[{"title":"optimization_test.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"tokenization.py <span style='color:#111;'> 10.45KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 110B </span>","children":null,"spread":false},{"title":"tokenization_test.py <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"modeling_test.py <span style='color:#111;'> 8.98KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"run_squad.py <span style='color:#111;'> 45.29KB </span>","children":null,"spread":false},{"title":"run_classifier.py <span style='color:#111;'> 31.09KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"modeling.py <span style='color:#111;'> 37.28KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 39.89KB </span>","children":null,"spread":false},{"title":"sample_text.txt <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"multilingual.md <span style='color:#111;'> 10.54KB </span>","children":null,"spread":false},{"title":"run_pretraining.py <span style='color:#111;'> 18.23KB </span>","children":null,"spread":false},{"title":"extract_features.py <span style='color:#111;'> 19.45KB </span>","children":null,"spread":false},{"title":"create_pretraining_data.py <span style='color:#111;'> 14.85KB </span>","children":null,"spread":false}],"spread":false},{"title":"server","children":[{"title":"zmq_decor.py <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 29.91KB </span>","children":null,"spread":false},{"title":"helper.py <span style='color:#111;'> 10.33KB </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 16.33KB </span>","children":null,"spread":false},{"title":"http.py <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"runs","children":[{"title":"__init__.py <span style='color:#111;'> 964B </span>","children":null,"spread":false}],"spread":true},{"title":"train","children":[{"title":"train_helper.py <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"bert_lstm_ner.py <span style='color:#111;'> 26.96KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"tf_metrics.py <span style='color:#111;'> 8.12KB </span>","children":null,"spread":false},{"title":"conlleval.py <span style='color:#111;'> 9.96KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 9.23KB </span>","children":null,"spread":false},{"title":"lstm_crf_layer.py <span style='color:#111;'> 6.75KB </span>","children":null,"spread":false},{"title":"conlleval.pl <span style='color:#111;'> 12.52KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"build.sh <span style='color:#111;'> 63B </span>","children":null,"spread":false},{"title":"thu_classification.py <span style='color:#111;'> 25.18KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明