BERT+BiLSTM+CRF是一种用于中文命名实体识别(Named Entity Recognition,简称NER)的模型,结合了BERT模型、双向长短时记忆网络(Bidirectional LSTM)和条件随机场(CRF)。 BERT是一种预训练的深度双向变换器模型,具有强大的自然语言处理能力。它能够学习上下文相关的语义表示,对于NLP任务非常有用。 BiLSTM是一种循环神经网络,能够捕捉上下文之间的依赖关系。通过同时考虑前向和后向上下文,BiLSTM能够更好地理解句子中实体的边界和内部结构。 CRF是一种概率图模型,常用于序列标注任务。它能够基于输入序列和概率分布进行标签推断,使得预测的标签序列具有全局一致性。 在BERT+BiLSTM+CRF模型中,首先使用BERT模型提取句子中的特征表示。然后,将这些特征输入到BiLSTM中,通过双向上下文的学习,得到更丰富的句子表示。最后,使用CRF层对各个词的标签进行推断,并输出最终的实体识别结果。 这种模型的优势在于能够充分利用BERT的语义信息和BiLSTM的上下文依赖性,同时通过CRF层对标签进行约束,提高了实体识别的
2024-07-02 15:37:12 801KB python 毕业设计 bert 自然语言处理
BERT+BiLSTM+CRF是一种用于命名实体识别(Named Entity Recognition, NER)的深度学习模型。其中,BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,用于捕捉上下文信息;BiLSTM(双向长短时记忆网络)用于处理序列数据;CRF(条件随机场)用于解决标签偏置问题,提高模型的预测准确性。 在训练过程中,需要将输入数据转换为适当的格式,并使用适当的损失函数和优化器进行训练。在推理阶段,可以使用训练好的模型对新的文本进行命名实体识别。
2024-03-08 14:14:58 1.03MB pytorch pytorch 自然语言处理 bert
1
tf2crf 一个简单的CRF层用于tensorflow 2 keras 支持keras遮罩 安装 $ pip install tf2crf 特征 易于使用的带有张量流的CRF层 支持混合精度训练 支持具有DSC丢失的ModelWithCRFLossDSCLoss,这会在数据不平衡的情况下提高f1得分(请参阅) 注意力 在keras_contrib中添加CRF之类的内部内核,因此现在无需在CRF层之前堆叠Dense层。 我已经更改了将损耗函数和精度函数放在CRF层中的以前的方式。 相反,我选择使用ModelWappers(称为jaspersjsun),它更干净,更灵活。 尖端 tensorflow> = 2.1.0建议使用与您的tf版本兼容的最新tensorflow-addons。 例子 import tensorflow as tf from tf2CRF import CRF
2023-04-09 18:10:30 8KB Python
1
近年来,文本的情感分析一直都是自然语言处理领域所研究的热点问题;微博作为一种短文本,用词精炼而简洁,富含观点、倾向和态度。因此,识别微博的情感倾向具有重要的现实意义。提出一种基于SVM和CRF的情感分析方法,使用多种文本特征,包括词、词性、情感词、否定词、程度副词和特殊符号等,并选用不同的特征组合,通过多组实验使情感分析效果最优。实验显示,选用词性、情感词和否定词的特征组合时,SVM模型的正确率达到88.72%,选用情感词、否定词、程度副词和特殊符号的特征组合时,CRF模型的正确率达到9044%。
1
CRF++ 训练中文分词,文件后缀有3标示3列的语料,文件后缀有2,表示2列的语料训练
2023-03-29 20:29:09 2.61MB CRF++ 分词
1
这是笔记配套的代码,详细说明看本人博文,上面有详细介绍
2023-03-17 18:00:15 50KB CRF 机器学习笔记
1
CRF++ 5.8,压缩包里面Linux版本和Windows版本都有。 CRF算法,中文名称条件随机场算法,外文名称conditional random field algorithm,是一种数学算法,是2001年提出的,基于遵循马尔可夫性的概率图模型。
2023-03-13 09:51:11 1.23MB CRF++ CRF++-5.8 crf+learn crf_test
1
关系分类是自然语言处理领域的一项重要任务,能够为知识图谱的构建、问答系统和信息检索等提供技术支持.与传统关系分类方法相比较,基于神经网络和注意力机制的关系分类模型在各种关系分类任务中都获得了更出色的表现.以往的模型大多采用单层注意力机制,特征表达相对单一.因此本文在已有研究基础上,引入多头注意力机制(Multi-head attention),旨在让模型从不同表示空间上获取关于句子更多层面的信息,提高模型的特征表达能力.同时在现有的词向量和位置向量作为网络输入的基础上,进一步引入依存句法特征和相对核心谓词依赖特征,其中依存句法特征包括当前词的依存关系值和所依赖的父节点位置,从而使模型进一步获取更多的文本句法信息.在SemEval-2010任务8数据集上的实验结果证明,该方法相较之前的深度学习模型,性能有进一步提高.
2023-02-27 17:05:50 981KB 关系分类 Bi-LSTM 句法特征 self-attention
1
BI-LSTM-CRF用于方面提取-情感提取 数据->通过BDCI 2017基于主题的文本情感分析的训练数据修改的数据集: ://www.datafountain.cn/#/competitions/268/intro,最后访问时间2018/5/13 train.csv->培训文件大小:13652 dev.csv->开发文件大小:2000 test.csv->测试文件大小:2000 pre_data.py->生成用于随机嵌入和label2tag的字典 model.py-> BI-LSTM-CRF / BI-LSTM / LSTM-CRF / LSTM-CRF的实现 main.py->主文件 conlleval_rev.pl-> SINHAN NER任务的评估手稿 conlleval.py->此任务的评估指标,可用于序列标记任务
2023-02-17 10:12:52 1.02MB Python
1
用卷积滤波器matlab代码CRF-RNN用于语义图像分割 现场演示: 更新: 版本现已可用。 现在,我们支持最新的Caffe未来版本。 该软件包包含ICCV 2015论文中发布的“ CRF-RNN”语义图像分割方法的代码。 本文最初在NET中进行了描述。 基于此代码的在线演示在2015 ICCV上获得了最佳演示奖。我们的软件基于深度学习库构建。 当前版本由以下人员开发: ,,,和Suzhizhong。 导师: 我们的工作允许计算机识别图像中的对象,而我们的工作的与众不同之处在于,我们还可以恢复对象的2D轮廓。 目前,我们已经训练了该模型以识别20个班级。 该软件可以让您在自己的图像上测试我们的算法–试试看是否可以欺骗它,如果您得到一些好的示例,可以将其发送给我们。 我们为什么这样做? 这项工作是为弱视者打造增强现实眼镜项目的一部分。 请在此处阅读有关内容。 有关演示和有关CRF-RNN的更多信息,请访问项目网站:。 如果您使用此代码/模型进行研究,请引用以下论文: @inproceedings{crfasrnn_ICCV2015, author = {Shuai Zheng and
2023-02-10 08:47:38 1.09MB 系统开源
1