基于crf+ngram的中文纠错.zip

上传者: echo_186 | 上传时间: 2021-05-03 09:01:48 | 文件大小: 4.54MB | 文件类型: ZIP
除了crf+ngram这种基于统计纠错的方法外还有一种基于深度学习的seq2seq方法,有简单的注释,有训练集和测试集数据,属于很基础的模型。

文件下载

资源详情

[{"title":"( 48 个子文件 4.54MB ) 基于crf+ngram的中文纠错.zip","children":[{"title":"中文拼写检错实验","children":[{"title":"n-gram+crf","children":[{"title":"predict.txt <span style='color:#111;'> 26.56KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"valid.char.txt <span style='color:#111;'> 44.23KB </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 52.73KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 466.76KB </span>","children":null,"spread":false},{"title":"test.char.txt <span style='color:#111;'> 46.34KB </span>","children":null,"spread":false},{"title":"train.char.txt <span style='color:#111;'> 411.57KB </span>","children":null,"spread":false},{"title":"valid.txt <span style='color:#111;'> 50.27KB </span>","children":null,"spread":false},{"title":"crf_predict.txt <span style='color:#111;'> 46.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"preprocess_crf.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"target_train.txt <span style='color:#111;'> 235.24KB </span>","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false},{"title":"crf.py <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"ngram.py <span style='color:#111;'> 6.39KB </span>","children":null,"spread":false},{"title":"preprocess_ngram.py <span style='color:#111;'> 175B </span>","children":null,"spread":false}],"spread":true},{"title":"中文拼写检错实验.docx <span style='color:#111;'> 16.07KB </span>","children":null,"spread":false},{"title":"text_correct","children":[{"title":"data","children":[{"title":"test.txt <span style='color:#111;'> 52.73KB </span>","children":null,"spread":false},{"title":"test.tsv <span style='color:#111;'> 44.23KB </span>","children":null,"spread":false},{"title":"train.tsv <span style='color:#111;'> 391.93KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 466.76KB </span>","children":null,"spread":false},{"title":"valid.txt <span style='color:#111;'> 50.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"image","children":[{"title":"seq2seq结构.png <span style='color:#111;'> 9.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"seq2seq","children":[{"title":"infer.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"output","children":[{"title":"test.txt <span style='color:#111;'> 52.73KB </span>","children":null,"spread":false},{"title":"model_sighan_seq2seq.pth <span style='color:#111;'> 4.10MB </span>","children":null,"spread":false},{"title":"vocab_target.txt <span style='color:#111;'> 13.60KB </span>","children":null,"spread":false},{"title":"vocab_source.txt <span style='color:#111;'> 14.75KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 466.76KB </span>","children":null,"spread":false},{"title":"valid.txt <span style='color:#111;'> 50.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 80B </span>","children":null,"spread":false},{"title":"data_reader.py <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 793B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"seq2seq.cpython-37.pyc <span style='color:#111;'> 5.99KB </span>","children":null,"spread":false},{"title":"config.cpython-37.pyc <span style='color:#111;'> 785B </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 206B </span>","children":null,"spread":false},{"title":"data_reader.cpython-37.pyc <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false}],"spread":true},{"title":"preprocess.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"seq2seq.py <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 5.49KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".idea","children":[{"title":".gitignore <span style='color:#111;'> 255B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 201B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 18.17KB </span>","children":null,"spread":false},{"title":"webResources.xml <span style='color:#111;'> 385B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"中文错别字纠错实验.iml <span style='color:#111;'> 612B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 313B </span>","children":null,"spread":false}],"spread":true},{"title":"correct.txt <span style='color:#111;'> 26.58KB </span>","children":null,"spread":false},{"title":"evaluation.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明