2020级天津大学数字逻辑多数表决器的设计与实现
2023-04-03 18:53:32 748KB 数字逻辑 vivado 多数表决器
1
MATLAB数据字典生成代码数据分析基础 数据分析基础-Task's 2020 高威梅奥技术学院-HDip Data Analytics 2020-2021 基思·巴西尔-G00387845 项目简介: 在学期的不同时间,这里列出了四个任务。 您应该在一个Jupyter笔记本中完成所有任务。 该文件以及相关文件(如README)应放在与GitHub [1]这样的托管提供程序同步的单个git存储库中。 然后应使用Moodle页面上的链接提交该URL。 2020年10月5日:编写一个名为counts的Python函数,该函数将列表作为输入,并返回列表中唯一项的字典作为键,并且将每个项作为值出现的次数。 因此,输入['A','A','B','C','A']应该具有输出{'A':3,'B':1,'C':1}。 您的代码不应依赖于标准库1中的任何模块或其他模块。 您应该首先研究该任务,并在笔记本中包含有关算法参考的描述。 2020年11月2日:编写一个名为dicerolls的Python函数,该函数模拟掷骰子。 您的函数应采用两个参数:骰子k的数量和掷骰子n的次数。 该函数应模拟n次随机滚动k个
2023-04-01 20:41:46 527KB 系统开源
1
IntelliJ IDEA 2020.1.4 x64官方
2023-03-29 18:32:34 744.54MB 开发工具
1
时间同步为TSN时间敏感网络的基础。,在TSN协议中,IEEE 802.1 AS (gPTP)可以实现亚微 秒级的时间同步
2023-03-29 18:21:38 3.31MB TSN 时间同步 gPTP
1
IEC 60601-1_2020完整版 可复制文字原版(866页)医用电气设备第1部分:基本安全和基本性能的一般要求.pdf
2023-03-29 15:20:25 14.44MB iec 60601
1994-2020全国30个省份城镇化率面板数据
2023-03-28 19:40:10 38KB 城镇化率 面板数据 2020 控制变量
1
RadiAnt DICOM Viewer 2020.2.3 Crack
2023-03-26 09:27:41 8.87MB RadiAnt DICOM Viewer
1
2020广东物理学科超声波可控悬浮竞赛程序 LCD _ 蓝牙_ PWM _采集程序 2020广东物理学科超声波可控悬浮竞赛程序 LCD _ 蓝牙_ PWM _采集程序
2023-03-25 18:01:14 4.5MB 嵌入式
1
2020江苏省电子设计竞赛C题(省一等奖)的PID算法仿真,便于基于STM32硬件实现PID控制算法,基于matlab实现PID算法仿真,结果准确可靠,实现简单
2023-03-24 14:25:17 397B PID算法;MATLAB
1
Recent developments in laser scanning technologies have provided innovative solutions for acquiring three-dimensional (3D) point clouds about road corridors and its environments. Unlike traditional field surveying, satellite imagery, and aerial photography, laser scanning systems offer unique solutions for collecting dense point clouds with millimeter accuracy and in a reasonable time. The data acquired by laser scanning systems empower modeling road geometry and delineating road design parameters such as slope, superelevation, and vertical and horizontal alignments. These geometric parameters have several geospatial applications such as road safety management. The purpose of this book is to promote the core understanding of suitable geospatial tools and techniques for modeling of road traffic accidents by the state-of-the-art artificial intelligence (AI) approaches such as neural networks (NNs) and deep learning (DL) using traffic information and road geometry delineated from laser scanning data. Data collection and management in databases play a major role in modeling and developing predictive tools. Therefore, the first two chapters of this book introduce laser scanning technology with creative explanation and graphical illustrations and review the recent methods of extracting geometric road parameters. The third and fourth chapters present an optimization of support vector machine and ensemble tree methods as well as novel hierarchical object-based methods for extracting road geometry from laser scanning point clouds. Information about historical traffic accidents and their circumstances, traffic (volume, type of vehicles), road features (grade, superelevation, curve radius, lane width, speed limit, etc.) pertains to what is observed to exist on road segments or road intersections. Soft computing models such as neural networks are advanced modeling methods that can be related to traffic and road features to the historical accidents and generates regression equations that can be used in various phases of road safety management cycle. The regression equations produced by NN can identify unsafe road segments, estimate how much safety has changed following a change in design, and quantify the effects of road geometric features and traffic information on road safety. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.
2023-03-22 16:49:12 8.29MB neural networks deep learning
1