山东大学2020年深度学习复习整理
2023-06-04 21:23:33 35KB deep learning
1
编译的HTML关于SQL Server 2005帮助
2023-05-30 08:29:50 1.94MB SQL Server;SQL Server 2005
1
-Learning Python中文版
2023-05-26 12:57:34 8.22MB Learning Python
1
pytorch中的训练模型示例 PyTorch中的深度学习算法的一些实现。 排名-学习排名 排名网 前馈NN,最小化文档对交叉熵损失函数 训练模型 python ranking/RankNet.py --lr 0.001 --debug --standardize --debug打印参数规范和参数grad规范。 这可以评估是否存在梯度消失和梯度爆炸问题- --standardize可确保将输入缩放为平均值为0且标准差为1.0 NN结构:136-> 64-> 16-> 1,ReLU6作为激活函数 优化器 r 时代 损失(火车) 损失(评估) ndcg @ 10 ndcg @ 30 秒/纪元 因式分解 对/秒 亚当 0.001 25 0.63002 0.635508 0.41785 0.49337 312 损失函数 203739 亚当 0.001 50 0.6
2023-05-22 21:19:36 154KB learning-to-rank ndcg ranknet lambdarank
1
贝叶斯网络参数学习 课程项目-COL884(Spring'18):人工智能的不确定性 创作者:Navreet Kaur [2015TT10917] 客观的: 警报贝叶斯网络给定数据的贝叶斯参数学习,每行最多有一个缺失值。 使用的算法: 期望最大化 目标: 这项任务的目的是获得学习贝叶斯网络的经验,并了解它们在现实世界中的价值。 设想: 医学诊断。 一些医学研究人员创建了贝叶斯网络,该网络对(某些)疾病和观察到的症状之间的相互关系进行建模。 作为计算机科学家,我们的工作是根据健康记录来学习网络的参数。 不幸的是,在现实世界中,某些记录缺少值。 我们需要尽力计算网络参数,以便以后可以将其用于诊断。 问题陈述: 我们得到了由研究人员创建的贝叶斯网络(如BayesNet.png所示),注意此处对八种诊断进行了建模:血容量不足,左心衰竭,过敏React,镇痛不足,肺栓塞,插管,弯管和断线。
1
使用 Q-learning 算法在能源市场中实现利益最大化这篇论文有一些想法: Yousefi, S.、Moghaddam, MP 和 Majd, VJ (2011)。 使用综合需求响应模型在基于代理的零售市场中优化实时定价。 能源,36(9),5716-5727。
2023-05-16 16:19:35 20KB matlab
1
learning opencv.PDF+代码+图片
2023-05-16 15:22:50 30.14MB learning opencv PDF 代码
1
easytorch 使用Python的numpy实现的简易深度学习框架,API与pytorch基本相同,实现了自动求导、基础优化器、layer等。 1 文档目录 2 Quick Start from easytorch.layer import Linear, Tanh, Sequential from easytorch.optim import SGD import easytorch.functional as F # Create a model, optimizer, loss function model = Sequential( Linear(1, 5), Tanh(), Linear(5, 1) ) opt = SGD(model.parameters(), lr=3e-4) loss_fn = F.mse_loss # train the mod
2023-05-15 20:47:00 35KB deep-learning autograd autodiff JupyterNotebook
1
ml_with_django ml_with_django是一个开源模板,用于通过django应用程序提供机器学习模型。 该项目还包含一个基于django-admin的几乎可用于生产环境的管理仪表板。 您仅需几个步骤,即可使用此模板非常快速地开发基于django的ml应用程序。 该项目使用tensorflow 1.8版本,该版本仍然依赖于旧api版本。 更新到当前的tensorflow版本可能会产生不兼容的冲突。 本文件的内容 截屏 图像管理的管理员后端 日志管理 用户和组权限的屏幕截图 设定(TBD) 移至设置。 预安装 python 3.6.5 点子 virtualenv或virtualwrapper 设置管理员用户并开始使用 默认情况下,Django将创建一个本地sqllite.db并将该数据库用于本地开发。 创建一个超级用户帐户,然后启动应用程序: $ m
2023-05-15 20:30:39 13.55MB machine-learning django object-detection JavaScript
1
由于现实世界中并不能获取全部的state以及全部的action,因此值迭代方法在很多问题上还是会有局限性。这时用到的就是Q Learning方法了
2023-05-15 19:15:14 852KB QLearning 强化学习 python
1