有关于人脸识别的实验,有具体的实验说明和代码的实现
2023-03-25 15:37:16 684KB 人脸识别 PCA
1
接下来我们使用代码来实现:创建具有线性相关的数据:进行中心化:使用梯度上升法:w = direction(w) # 注意1:每次求一个单位方向画出对应的主轴为:
2023-03-24 21:34:05 600KB 软件/插件
1
手语是听力障碍人士交流的媒介。 它使用手势而不是声音来传达意义。 它结合了手的形状、手、手臂或身体的方向和运动、面部表情和唇形来传达信息。 不同类型的项目是针对聋哑人、听力障碍的人进行的。 提出了一种用于手语识别的具有计算机人机界面的系统。 但是该项目存在全国范围内的差异。 该项目的主要思想是设计一个系统,用于在任何公共场所与外界进行交流,从而无需在公共场所进行口译。 在那个项目中,我们需要以数字符号的印度手语为数据库形式的孤立图像。 普通相机可用于获取此数字符号。 主成分分析 (PCA) 用于预处理,其中删除冗余和不需要的数据。
2023-03-22 20:46:07 621KB PCA morphological processes
1
特征选择算法能够更好地提高入侵检测系统的检测速度和检测效果,消除冗余数据并减轻噪音特征.结合特征选择算法的优势,提出一种基于主成分分析(PCA)与决策树(C4.5)的入侵检测方法,进而构建出轻量级的入侵检测系统.通过在KDD1999数据集上对该方法进行详细的实验验证,证明该方法一方面确保系统有较高的检测率与较低误报率,另一方面能够比较显著地提高系统的训练时间与测试时间.同时,通过比较实验发现此方法在训练时间、测试时间、检测率、误报率上的效果也优于GA-SVM方法.
1
从UCI机器学习资源库中下载Musk数据集。在此数据集上分别使用PCA和SVD方法进行特征提取,并报告获得的特征值以及特征向量结果,对数据属性进行分析,使用盒图分别对获得的最优属性进行分析和对比。 import pandas as pd import os from numpy import * import numpy as np import matplotlib.pyplot as plt import seaborn as sbn sbn.set(color_codes = True) plt.rcParams['axes.unicode_minus'] = False from scipy.stats import kstest from sklearn.preprocessing import LabelEncoder from sklearn import preprocessing import pyecharts from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D
2023-03-21 21:42:51 1.61MB Musk
1
本文来源于csdn,介绍了SVM,线性分类器,线性分类器的求解,松弛变量,SVM用于多类分类等。支持向量机(SupportVectorMachine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和
2023-03-21 10:51:28 400KB SVM原理详解,通俗易懂
1
SVM图像分类论文:基于LatentSVM的人体目标检测与跟踪方法研究、基于LBP和SVM的工件图像特征识别研究、基于MATLAB的遥感图像SVM分类系统实现等
2023-03-20 21:05:50 23.55MB SVM 图像分类
1
提交Kaggle竞赛“真实与否?NLP与灾难鸣叫”(排名前25%) 挑战链接: : 链接到公共Kaggle笔记本(SVM): : 在此存储库中,您将找到3个笔记本: 一种使用spaCy字向量和SVM的 一种使用BiLSTM的 一种将预训练的BERT用于序列分类 在测试集上,SVM的f1得分达到0.81152,BiLSTM达到0.80,而BERT达到〜0.83 f1得分。
2023-03-20 16:46:11 990KB nlp svm binaryclassification JupyterNotebook
1
食源性致病菌的快速识别是一项重要的工作,与传统检测方法相比,拉曼光谱能在无损检测的同时加快鉴别速度。为了提高大肠杆菌O157∶H7以及布鲁氏菌S2株拉曼光谱识别的准确性和效率,提出一种基于主成分分析与Stacking算法的集成判别模型,使用网格搜索以及K折交叉验证来提高模型的稳健性。与逻辑回归、K近邻、支持向量机等单一模型进行对比,实验结果证明PCA-Stacking集成模型有最高的准确率,达99.73%,达到了预期效果。
2023-03-19 14:34:25 3.78MB 光谱学 拉曼光谱 机器学习 Stacking
1