在探讨“全光控制Pr3+:YSO晶体中高阶荧光过程”的知识点之前,首先需要明确几个基本概念。Pr3+指的是掺入到晶体中的三价镨离子,YSO是指掺杂镨离子的氧化钇晶体,这类晶体是透明的固体基质,用于固态激光器和放大器的制作中。全光控制是指使用光信号对其他光信号进行调制或控制,而不依赖于任何电子信号。 研究中首次报道的四阶和六阶荧光过程,涉及到非线性光学中的高阶荧光效应。在非线性光学中,当介质受到高强度的光场作用时,介质的光学特性不再是光强的线性函数,此时会出现多种非线性效应,例如高阶荧光效应。高阶荧光效应是指光与物质相互作用时,产生的荧光信号频率为激发光频率的整数倍。 四阶荧光是指荧光频率为激发频率的四倍,而六阶荧光则是六倍。这样的高阶过程在非线性光学中是一种比较少见的现象,实现起来对实验条件有很高的要求,包括对光源的相干性、强度以及样品的纯度和均匀性等都有严格的要求。 文章中提到的“异核分子系统”指的是掺杂了不同离子的晶体结构,在这种结构中,多个离子(如文章中的Pr3+)在不同的阳离子空位上产生相互作用。这种相互作用是全光控制得以实现的关键。在实验中,通过改变控制场的频率失调和功率,可以实现荧光信号的增强或抑制,即可以从增强的峰转换到抑制的谷,并且反之亦然。这种转变可以用于制作全光开关,全光开关是未来光通信和光计算中的重要组件,它的实现可以不依赖于电子开关,提高传输速度,并降低能耗。 该研究的理论模型基于高阶相干过程,可以很好地解释实验结果。该模型不仅仅局限于Pr3+:YSO晶体,对于其他掺杂了稀土离子的无机晶体的研究也有潜在的应用价值。例如,在文献中提到的增强的四波混频(FWM)、光速降低和双光脉冲的可逆存储、基于光学存储的全光路由、光学存储信息的可控擦除、光速降低和相干存储,以及固态材料中的电磁感应透明(EIT)现象,这些都与原子相干性诱导的效应密切相关,并为未来的应用提供了基础。 在实际应用中,四阶和六阶荧光过程的可靠控制是必须的,本文通过理论和实验,展示了在Pr3+:YSO异核分子系统中实现的全光控制荧光过程。这为未来全光开关和全光路由等器件的研制提供了理论和技术基础。通过这些光学开关和路由设备,人们可以期望构建一个完全由光信号控制的光子网络,用于数据传输和处理,最终可能会对现代通信技术产生深远的影响。
2025-10-03 12:17:31 420KB 首发论文
1
根据提供的文件信息,本书《Probability, Statistics, and Random Processes for Engineers 4e》是一本针对工程学科学生在概率论、统计学以及随机过程方面提供深入教育的教材。本书由Henry Stark与John W. Woods共同编写,是该领域的权威之作。下面将对本书涉及的核心知识点进行详细的阐述。 ### 一、概率论基础 #### 1.1 随机实验与样本空间 - **定义**: 随机实验是指结果不能事先确定的实验,而所有可能结果的集合称为样本空间。 - **例子**: 如抛硬币实验中的样本空间为{正面, 反面}。 #### 1.2 事件与概率 - **事件**: 是样本空间的一个子集。 - **概率**: 表示事件发生的可能性大小。 - **古典概率**: 当所有可能的结果出现的机会相等时,某个事件的概率可以用该事件包含的样本点数目除以总的样本点数目来计算。 #### 1.3 条件概率与独立性 - **条件概率**: 给定事件B已经发生的情况下,事件A发生的概率。 - **独立事件**: 如果两个事件的发生互不影响,则称这两个事件是独立的。 ### 二、随机变量及其分布 #### 2.1 随机变量的概念 - **定义**: 随机变量是样本空间到实数集的映射函数。 - **分类**: 包括离散型随机变量和连续型随机变量。 #### 2.2 分布函数与密度函数 - **分布函数**: 描述随机变量取值小于等于某个特定值的概率。 - **密度函数**: 对于连续型随机变量,其概率可以通过密度函数下的面积来表示。 #### 2.3 数学期望与方差 - **数学期望**: 表示随机变量长期平均取值的趋势。 - **方差**: 表示随机变量取值相对于数学期望的波动程度。 ### 三、多维随机变量 #### 3.1 联合分布与边缘分布 - **联合分布**: 描述多个随机变量同时取值的概率分布。 - **边缘分布**: 从联合分布中推导出单个随机变量的分布。 #### 3.2 相关性与独立性 - **相关系数**: 用来衡量两个随机变量之间的线性关系强度。 - **独立性**: 如果两个随机变量的联合分布等于各自边缘分布的乘积,则它们是独立的。 ### 四、大数定律与中心极限定理 #### 4.1 大数定律 - **弱大数定律**: 随着独立同分布的随机变量序列的长度增加,样本均值趋近于总体均值。 - **强大数定律**: 几乎必然地,随着样本数量的增加,样本均值趋近于总体均值。 #### 4.2 中心极限定理 - **定理**: 对于任何具有有限方差的独立同分布随机变量序列,当样本量足够大时,样本均值的分布趋向于正态分布。 ### 五、统计推断 #### 5.1 参数估计 - **方法**: 包括矩估计法、极大似然估计法等。 - **评价标准**: 如无偏性、有效性等。 #### 5.2 假设检验 - **基本思想**: 根据样本信息判断原假设是否成立。 - **步骤**: 包括提出原假设与备择假设、选择显著性水平、构造检验统计量等。 ### 六、随机过程 #### 6.1 定义与分类 - **定义**: 随时间变化的一系列随机变量的集合。 - **分类**: 如平稳过程、马尔科夫过程等。 #### 6.2 特性分析 - **自相关函数**: 描述随机过程中不同时间点上取值的相关程度。 - **功率谱密度**: 描述随机过程能量或功率在频率域上的分布情况。 通过上述内容可以看出,《Probability, Statistics, and Random Processes for Engineers 4e》一书全面覆盖了工程师在概率论、统计学以及随机过程方面的基础知识与高级理论,对于理解这些概念并将其应用于实际工程问题具有重要的指导意义。
2025-09-13 03:25:23 7.53MB
1
Henry Stark and John Woods -- Probability and random processes with applications to signal processing Third Edition
2024-12-07 14:33:29 8.7MB Probability random processes Henry
1
项目介绍: 赛题名称:Linking Writing Processes to Writing Quality 背景:研究作者的写作过程和作品质量之间的关系,使用键盘日志数据来预测写作质量。 目标:预测写作的整体质量,探索写作方式对作文结果的影响。 数据处理: 数据集介绍:包含约5000份用户输入日志,涉及键盘和鼠标点击,每篇作文评分0到6分。 数据集文件:train_logs.csv、test_logs.csv、train_scores.csv、sample_submission.csv。 数据准备:涉及读取训练数据、提取特征、计算新特征、聚合操作等。 模型搭建: 使用的模型:CatBoost,一种基于对称决策树的GBDT框架,特别擅长处理类别型特征。 模型介绍:CatBoost由Yandex开发,旨在解决梯度偏差和预测偏移问题,提高算法准确性和泛化能力。 实验结果: 实验结果的展示:提供了实验结果的图表(图7),赛题最后的排名参考文末最后的部分。 ### 项目介绍 #### 1.1 赛题及背景介绍 Kaggle上的“Linking Writing Processes to Writing Quality”是一项聚焦于探究作者写作过程与其作品质量之间关系的数据挖掘竞赛。这一研究方向旨在理解作者在创作过程中的行为特征如何影响最终作品的质量。通常情况下,传统的写作评估方法主要侧重于评估作品的最终成果,而很少考虑作者在创作过程中的具体行为及其背后的心理活动。通过数据分析手段,我们可以尝试捕捉这些细微的动作,如停顿模式、时间分配等,并分析它们与写作质量的关系。 #### 1.2 项目要求 该竞赛的主要目标是预测文本作品的整体质量,并探讨不同的写作方式如何影响写作结果。通过对作者的键盘日志数据进行分析,参赛者需建立模型来预测写作质量,并进一步研究不同写作技巧和习惯是否会对最终的作品评价产生显著影响。这对于改进写作教学方法、提升学生写作技能具有重要意义。 ### 数据处理 #### 2.1 数据集介绍 本赛题提供的数据集包含了大约5000份用户的输入日志,这些日志记录了用户在键盘和鼠标上的交互行为,同时还包括了每篇作文的评分(0到6分)。数据集中包含了以下四个主要文件: - `train_logs.csv`:训练集的日志数据。 - `test_logs.csv`:测试集的日志数据。 - `train_scores.csv`:训练集中作文的得分信息。 - `sample_submission.csv`:提交格式示例。 #### 2.2 数据准备 数据准备阶段主要包括读取训练数据、特征提取、新特征计算以及数据聚合等步骤。这些步骤对于构建高质量的模型至关重要。例如,从键盘日志中提取出的特征可能包括击键频率、停顿时间、回删次数等,这些都可能是影响写作质量的关键因素。 #### 2.3 特征工程 特征工程是数据处理中极其重要的一步,它直接关系到模型的表现。在本赛题中,可以从以下几个方面入手: 1. **击键行为特征**:统计每个用户的击键频率、平均击键间隔等。 2. **停顿模式特征**:分析用户在写作过程中的停顿模式,如长时间停顿的次数或时长。 3. **编辑行为特征**:考察用户是否有频繁的回删操作,以及回删后的重写行为。 4. **上下文相关特征**:结合文本内容分析,比如词汇多样性、语法结构复杂度等。 ### 模型搭建 #### 3.1 使用模型介绍 本赛题中使用的模型为CatBoost,这是一种基于对称决策树的梯度提升框架。CatBoost由Yandex公司开发,其设计目的是为了更好地处理分类变量,并解决梯度提升中常见的梯度偏差和预测偏移问题。相较于其他梯度提升框架,CatBoost在处理类别特征时具有更高的准确性和更好的泛化能力。 #### 3.2 模型代码部分 CatBoost的实现通常需要安装相应的Python库。在模型训练阶段,可以利用CatBoost的内置函数来进行模型训练和参数调整。例如,可以通过设置不同的超参数(如学习率、树深度等)来优化模型性能。此外,还可以采用交叉验证技术来评估模型的泛化能力。 ### 实验结果 #### 4.1 实验结果的展示 根据竞赛的要求,参赛者需要提供实验结果的图表展示,以便直观地呈现模型的预测效果。这些图表通常包括模型的训练损失曲线、验证损失曲线、特征重要性分析等。通过这些图表,可以清晰地了解模型的学习过程以及哪些特征对预测结果贡献最大。 #### 4.2 赛题排名 赛题最后的成绩排名会在比赛结束后公布,这不仅是对参赛者能力的一种认可,也为其他研究人员提供了宝贵的参考价值。成绩排名反映了模型在测试集上的表现,从而间接证明了所选特征的有效性和模型的泛化能力。 ### 总结 “Linking Writing Processes to Writing Quality”竞赛不仅是一次技术挑战,更是一个探索写作过程与作品质量之间深层次联系的机会。通过细致的数据分析和建模工作,参赛者们能够揭示出写作过程中的关键行为特征,并将其转化为可量化的指标,进而预测作品的整体质量。这项研究不仅有助于提高个人的写作技能,还可能为教育领域带来革命性的变化,促进更加有效的写作教学方法的发展。
2024-10-01 10:30:06 621KB
1
本书是关于概率论和随机过程的经典教材,为许多国外论文所引用,也是浙江大学信息与通信工程专业考博的参考教材。这本书是第3版,虽然第4版已出版,但从网上读者的反馈来看还不如第三版,而且翻译得不令人满意(查看评论),所以相比之下,这本英文第3版更显得弥足珍贵,希望对大家学习有帮助。 这本书的格式是“DjVu”,大家用google搜索一下“WinDjView”就可以找到对应的阅读工具。我曾试着把它转换为PDF,但是转换后的文件都非常大,所以还是保留了它原来的格式。
2024-01-26 10:58:55 10.68MB 随机过程
1
This book is an outgrowth of lectures in Mathematics 240, "Applied Stochastic Processes," which I have taught a number of times at Duke University. The majority of the students in the course are graduate students from departments other than mathematics, including computer science, economics, business, biological sciences, psychology, physics, statistics, and engineering. There have also been graduate students from the mathematics department as well as some advanced undergraduates. The mathematical background of the students varies greatly, and the particular areas of stochastic processes that are relevant for their research also vary greatly.
2023-12-06 19:00:56 1.43MB Introduction stochastic processes
1
弱收敛余经验过程是概率统计专业博士生的必修课程,也是经典书籍。
2023-05-10 23:57:19 19.46MB 统计
1
通过卡尔曼滤波进行有效GP回归 基于两篇论文的存储库,其中包含相对于同类项目的简单实现代码: [1] A.Carron,M.Todescato,R.Carli,L.Schenato,G.Pillonetto,机器学习遇到了Kalman Filtering ,《 2016年第55届决策与控制会议论文集》,第4594-4599页。 [2] M.Todescato,A.Carron,R.Carli,G.Pillonetto,L.Schenato,通过卡尔曼滤波的有效时空高斯回归,ArXiv:1705.01485,已提交JMLR。 PS。 该代码尽管基于上述论文中使用的代码,但与之稍有不同。 它是它的后来的改进和简化版本。 而且,此处仍未提供[2]中介绍的用于实现自适应方法的代码。 文件内容是很容易解释的(有关每个文件的简要介绍,请参考相应的帮助): main.m:包含主程序 plotResul
1
手语是听力障碍人士交流的媒介。 它使用手势而不是声音来传达意义。 它结合了手的形状、手、手臂或身体的方向和运动、面部表情和唇形来传达信息。 不同类型的项目是针对聋哑人、听力障碍的人进行的。 提出了一种用于手语识别的具有计算机人机界面的系统。 但是该项目存在全国范围内的差异。 该项目的主要思想是设计一个系统,用于在任何公共场所与外界进行交流,从而无需在公共场所进行口译。 在那个项目中,我们需要以数字符号的印度手语为数据库形式的孤立图像。 普通相机可用于获取此数字符号。 主成分分析 (PCA) 用于预处理,其中删除冗余和不需要的数据。
2023-03-22 20:46:07 621KB PCA morphological processes
1
EWM100_EN_Col92_FV_Part_A4 - Extended Warehouse Management Processes
2023-02-12 10:30:09 24.38MB SAP Extended Warehouse Management
1