CNN-On-The-Cloud- 用于为Fashion MNIST数据集构建图像分类器的代码。 使用Keras库构建并在FloydHub云平台上接受培训。 您可以在签出相应的“中型”文章 您可以通过单击下面的按钮快速获得此代码并在云上运行。
2022-04-18 18:24:57 24KB tutorial deep-learning floydhub neural-networks
1
甲状腺 用于评估在超声中观察到的甲状腺结节的代码库:与使用ACR TI-RADS的放射科医生进行深度学习的比较。 由开发。 它包含使用Keras框架和TensorFlow后端的多任务CNN模型的实现。 如果您在研究中使用此代码,请考虑引用以下内容: @article{buda2019evaluation, title={Evaluation of Thyroid Nodules Seen on Ultrasound: Comparison of Deep Learning to Radiologists Using ACR TI-RADS}, author={Buda, Mateusz and Wildman-Tobriner, Benjamin and Hoang, Jenny K and Thayer, David and Tessler, Franklin N an
1
《Neural Networks and Deep Learning》代码,从git上面偷来的,需要的自行下载,只改了第一个mnist_loder和network,其他的有时间再改
2022-04-14 14:00:40 18.09MB python 深度学习 《Neural Networks
1
非常清晰非常清晰!!!Michael Nielsen 大神的 《Neural Networks and Deep Learning》 网络教程一直是很多如我一样的小白入门深度学习的很好的一本初级教程。不过其原版为英文,对于初期来说我们应该以了解原理和基本用法为主,所以中文版其实更适合初学者。幸好国内有不少同好辛苦翻译了一个不错的中文版本,并且使用 LaTex 进行排版以方便阅读。
2022-04-08 20:39:24 2.85MB 人工智能 机器学习 深度学习 神经网络
1
Artificial Neural Networks人工神经网络.ppt
2022-04-06 01:44:07 1.42MB 计算机 .net
TFCudnnLSTM TensorFlow的高效CudnnLSTM模块的简单模板 依存关系 TensorFlow v1.8 + CUDA v9.0 + cuDNN v7.0 + scikit学习 tqdm 计算性能 TensorFlow的性能指南包括 ,其中指出: 在NVIDIA GPU上,始终应首选使用tf.contrib.cudnn_rnn除非您需要不支持的图层归一化。 根据,与TensorFlow的其他LSTM实现相比, CudnnLSTM实现了显着的加速(比LSTMBlockFused快约2倍,比BasicLSTM快约5倍)。 语言建模实验 我们还采用并尝试运行在那里实现的三个LSTM版本: BasicLSTMCell , LSTMBlockCell和CudnnLSTM 。 我们发现由于API的更改, CudnnLSTM示例无法在TF v1.8中运行,但是在解决了一些
1
图神经网络 这是一个PyTorch库,用于实现图神经网络和图递归神经网络。 如有任何问题,意见或建议,请发送电子邮件至Fernando Gama(电子邮件至和/或Luana Ruiz(至 。 在可以找到有关源代码本地化示例的深入教程。 () 每当使用此代码的任何部分时,请引用以下论文 F. Gama,AG Marques,G。Leus和A. Ribeiro,“”, IEEE Trans。 信号处理。 ,卷。 67号4,第1034-1049页,2019年2月。 我们注意到,某些特定的具有特定的论文引文,以充分认可各自的贡献者。 作者关于GNN的其他论文是 提交给IEEE Trans的E. Isufi,F。Gama和A. Ribeiro,“ EdgeNets:边变图神经网络” 。 模式分析和马赫数。 智力 F. Gama,E。Isufi,G。Leus和A. Ribeiro,“图,卷积和神经
2022-03-29 14:10:28 46.7MB Python
1
深度学习中的不确定性量化 此回购包含文献调查和基线的实现,以用于深度学习中的预测不确定性估计。 文献调查 不确定性估算的基本背景 埃夫隆(B. Efron)和蒂布希拉尼(R. Tibshirani)。 “用于标准误差,置信区间和其他统计准确性度量的引导方法。” 统计科学,1986年。 R. Barber,EJ Candes,A。Ramdas和RJ Tibshirani。 “用折刀+进行预测性推论。” arXiv,2019年。 B.埃夫隆。 “ Jackknife-bootstrap之后的标准错误和影响功能。” 皇家统计学会杂志:B系列(方法论),1992年。 J.罗宾斯和A. Van Der Vaart。 “自适应非参数置信集。” 统计年鉴,2006年。 V. Vovk等人,“跨等角预测分布”。 JMLR,2018年。 M. H Quenouille。,“时间序列相关
1
文本分类模型 在Pytorch中实现最新的文本分类模型 实施模型 fastText:fastText模型, TextCNN:提出的用于文本分类的CNN TextRNN:用于文本分类的双向LSTM网络 RCNN:在提出的的RCNN模型的实现 CharCNN: 提出的字符级CNN的实现 带有注意力的Seq2seq :,从注意实现seq2seq模型 变压器:提出的变压器模型的实现 要求 Python-3.5.0 熊猫0.23.4 Numpy-1.15.2 Spacy-2.0.13 Pytorch-0.4.1.post2 火炬文字-0.3.1 用法 将数据下载到“ data /”目录中或使
2022-03-28 10:27:15 12.48MB nlp deep-learning pytorch recurrent-neural-networks
1
图形 GraphLIME是节点分类任务中GNN的模型不可知的,局部的和非线性的解释方法。 它使用Hilbert-Schmit独立标准(HSIC)Lasso,这是一个非线性可解释模型。 可以在看到更多详细信息。 这个仓库通过使用令人印象深刻的GNN库实现GraphLIME,并重现了过滤掉无用特征的结果。 即论文中的图3。 安装 只需使用pip即可安装。 > pip install graphlime 用法 此实现易于使用。 您需要做的就是确认模型首先输出对数概率(例如, F.log_softmax()输出),然后实例化GraphLIME对象,最后通过调用explain_node()方法解释特定的节点。 from graphlime import GraphLIME data = ... # a `torch_geometric.data.Data` object model =
1