Countless learning tasks require dealing with sequential data. Image captioning, speech synthesis, and music generation all require that a model produce outputs that are sequences. In other domains, such as time series prediction, video analysis, and musical information retrieval, a model must learn from inputs that are sequences. Interactive tasks, such as translat- ing natural language, engaging in dialogue, and controlling a robot, often demand both capabilities. Recurrent neural networks (RNNs) are connec- tionist models that capture the dynamics of sequences via cycles in the network of nodes.
2022-05-23 21:11:23 1.03MB RNN
1
神经网络(GNNs)是一种针对学习图表示的神经网络结构,已经成为一种流行的学习模型,用于预测节点、图和点的构型的任务,并在实践中获得了广泛的成功。本文选取了广泛应用的消息传递神经网络和高阶神经网络的逼近和学习特性的新兴理论成果,重点从表示、概括和外推三个方面进行了综述。本文总结了数学上的联系。
1
介绍人工神经元网络的书,理论概念比较详细
2022-05-16 20:27:29 4.36MB Neural Networks
1
人脸识别 通过深度学习实现的人脸检测和识别系统。 人脸数据集 非人脸数据集 带有滑动窗口的人脸检测
2022-05-16 19:41:53 648.25MB deep-neural-networks tensorflow keras python3
1
深度压缩压缩深度神经网络,并带有经过修剪训练的量化和霍夫曼算法 这是文件的pytorch实现。 Pytorch版本:0.4.0
2022-05-16 09:58:23 6KB deep-learning pytorch Python
1
Yahoo的开放NSFW模型的Tensorflow实现 该存储库包含以tensorflow重写的的实现。 原始重量已使用提取 。 您可以在data/open_nsfw-weights.npy找到它们。 先决条件 所有代码均应与Python 3.6和Tensorflow 1.x (经1.12测试)兼容。 该模型的实现可以在model.py找到。 用法 > python classify_nsfw.py -m data/open_nsfw-weights.npy test.jpg Results for 'test.jpg' SFW score: 0.9355766177177429 NSF
2022-05-15 21:11:07 21.11MB deep-neural-networks caffe deep-learning tensorflow
1
可视化分析RNN的状态变化 有关LSTMVis,介绍视频以及实时演示链接的更多信息,请访问 还可以在或在线演示中查看我们关于序列到序列模型的新工作,为 V2.1中的更改 更新到Python 3.7 ++(感谢@nneophyt) V2的变化 新设计和服务器后端 隐藏状态轨道的离散缩放 添加了用于元数据和预测的注释轨道 为张量流添加了训练和提取工作流 客户端现在是ES6和D3v4 客户端的一些性能增强 添加了Keras教程(感谢Mohammadreza Ebrahimi) 安装 请使用python 3.7或更高版本来安装LSTMVis。 克隆存储库: git clone https://github.com/HendrikStrobelt/LSTMVis.git ; cd LSTMVis 使用安装python(服务器端)要求: python -m venv venv3 sour
1
随着网络信息的爆炸式增长,推荐系统在缓解信息过载方面发挥了重要作用。由于推荐系统具有重要的应用价值,这一领域的研究一直在不断涌现。近年来,图神经网络(GNN)技术得到了广泛的关注,它能将节点信息和拓扑结构自然地结合起来。由于GNN在图形数据学习方面的优越性能,GNN方法在许多领域得到了广泛的应用。在推荐系统中,主要的挑战是从用户/项目的交互和可用的边信息中学习有效的嵌入用户/项目。由于大多数信息本质上具有图结构,而网络神经网络在表示学习方面具有优势,因此将图神经网络应用于推荐系统的研究十分活跃。本文旨在对基于图神经网络的推荐系统的最新研究成果进行全面的综述。具体地说,我们提供了基于图神经网络的推荐模型的分类,并阐述了与该领域发展相关的新观点。
1
RBF 神经网络(激活函数的中心和分布随机选择) 参数(K:内核数) RBFNN 有 5 个优化参数: 1- 隐藏层和输出层之间的权重。 2- 激活函数。 3- 激活函数的中心。 4- 激活函数的分布。 5- 隐藏神经元的数量。 隐藏层和输出层之间的权重使用 Moore-Penrose 广义伪逆计算。 该算法克服了传统梯度算法中的许多问题,如停止标准、学习率、时期数和局部最小值。 由于其较短的训练时间和泛化能力,适合实时应用。 选择的径向基函数通常是用于模式识别应用的高斯核。 通常激活函数的中心和分布应该具有与数据相似的特征。 这里,高斯分布的中心和宽度是随机选择的。 基于通用逼近理论中心和激活函数的分布是不确定的,如果隐藏神经元数量足够多,可以说具有足够数量隐藏神经元的单隐藏层前馈网络可以将任何函数逼近任意级别的准确性。
2022-05-07 14:59:50 4KB matlab
1
图神经网络是一种对没有固定结构的数据进行建模的诱人方法。然而,让他们按预期工作多年来经历了一些曲折。在本次演讲中,我将介绍图挖掘团队在谷歌上使GNN有用的工作。我将专注于我们已经发现的挑战以及我们为它们开发的解决方案。具体来说,我将重点介绍一些工作,这些工作实现了更富表现力的图卷积、更健壮的模型和更好的图结构。
2022-05-04 21:06:16 3.41MB 文档资料 神经网络 人工智能 深度学习