人脸识别_基于yolov5_arcface的人脸识别项目
2024-06-15 20:51:40 3.41MB yolo 人脸识别 深度学习 人工智能
1
yolo-v8.zip
2024-06-05 14:59:48 278.19MB
1
本文来自于简书,本文主要介绍了对YOLO原理进行目标检测,以及yolov2网络结构为全卷积网络FCN,希望对您的学习有所帮助。 创新点:端到端训练及推断+改革区域建议框式目标检测框架+实时目标检测 1.1创新点 (1)改革了区域建议框式检测框架:RCNN系列均需要生成建议框,在建议框上进行分类与回归,但建议框之间有重叠,这会带来很多重复工作。YOLO将全图划分为SXS的格子,每个格子负责中心在该格子的目标检
2024-05-30 00:35:39 775KB
1
YOLO txt格式的船舶识别数据集,图片数量5000,标签共有10类,类别:['BULK CARRIER', 'CONTAINER SHIP', 'GENERAL CARGO', 'OIL PRODUCTS TANKER', 'PASSENGERS SHIP', 'TANKER', 'TRAWLER', 'TUG', 'VEHICLES CARRIER', 'YACHT']。
2024-05-28 18:14:26 43.95MB 数据集 YOLO Python 深度学习
1
包含693张图片PCB电路板缺陷的图片,已标注为voc xml和YOLO txt格式两种格式的标签。缺陷类别包含六种:missing_hole,mouse_bite,open_circuit,short,spurious_copper,spur
2024-05-24 20:31:17 907.68MB 数据集 缺陷检测 YOLO 深度学习
1
1、YOLO苹果缺陷目标检测数据集包含700张高质量的真实场景图片,图片格式为jpg。数据场景丰富,分为训练集和验证集。 2、使用lableimg标注软件进行标注,标注框质量高,标签格式为VOC格式(即xml标签)。这些标签可以直接用于YOLO系列的目标检测任务。
2024-05-22 19:11:11 5.66MB 目标检测 数据集
1
YOLO(You Only Look Once)是一种目标检测算法,其特点是速度快且准确率高。在进行YOLO的落地部署时,需要考虑以下几个方面: 1. 硬件选择:为了实现实时目标检测,需要选择适合的硬件设备。通常情况下,使用GPU可以加速YOLO的推理过程。 2. 模型训练与转换:首先,需要使用标注好的数据集对YOLO模型进行训练。训练完成后,将模型转换为适合部署的格式,如TensorRT、OpenVINO等。 3. 模型优化:为了提高YOLO的推理速度,可以进行模型优化。例如,使用剪枝技术减少模型参数量、使用量化技术减少模型的存储空间和计算量等。 4. 推理引擎选择:选择适合的推理引擎进行部署。常用的推理引擎有TensorRT、OpenVINO、NCNN等,它们可以针对不同硬件平台进行优化。 5. 输入数据预处理:在进行目标检测之前,需要对输入图像进行预处理,如图像缩放、归一化等操作。 6. 后处理与结果展示:在得到目标检测结果后,可以进行后处理操作,如非极大值抑制(NMS)来去除冗余的检测框。最后,将结果展示在图像或视频上。
2024-05-21 19:15:05 2.1MB
1
采用tensorflow(python)实现 YOLO v3目标检测算法,可对图片,包含图片的文件夹、摄像头和视频进行对如下20个类物体的检测。
2024-05-19 16:27:00 259KB tensorflow python 目标检测 yolo
1
本人带的一个本科毕设资料,内含全部可执行代码。包括YOLOV5复现,YOLOV5加注意力机制改进,成功将在VOC数据集上的精确度由76%提升至77%。 包括训练及测试代码,仅包括代码,本人已经调通,仅需要更改路径即可。不包含预训练权重,资源仅包含本人实现的全部代码,不包含论文,应对本科毕设足够。 预训练权重、论文模板、演示视频,可私信获取。
2024-05-12 16:38:32 7.53MB YOLO YOLOv5 注意力机制 毕业设计
1
易语言yolo自瞄源码
2024-05-02 10:13:59 31.4MB
1