清洗了的红外行人检测数据集,其中包括2921个数据集,数据集的标签格式为YOLO格式,能够直接用于YOLO系列模型的训练。 图像数据 全部相关数据集介绍链接: https://blog.csdn.net/weixin_49824703/article/details/147150512?spm=1001.2014.3001.5502 在当今的人工智能研究领域中,计算机视觉扮演着至关重要的角色,尤其是在物体检测、人脸识别、行人检测等方面。此次分享的“IR4红外光人体检测数据集-YOLO格式-图像数据(2/2)”便是一个专门为红外行人检测设计的数据集,涵盖了2921个经过清洗的数据样本,这对于研究者和开发者来说无疑是一大福音。 这个数据集采用了YOLO(You Only Look Once)格式作为标注形式。YOLO是一种流行的目标检测算法,其模型能够在单次的前向传播中迅速准确地识别图像中的多个对象,这在实时监控和安全防范领域尤为关键。由于YOLO算法的高效性,它已被广泛应用于自动驾驶、视频监控、工业检测等多个领域。 数据集中的每一个图像样本都标记了人体的位置,具体到在图像中所占的区域。这种细致的标签工作使得数据集可以被直接用于YOLO系列模型的训练,从而极大地提升了模型训练的效率。研究者无需从零开始准备数据,可以节省大量的时间和资源,将更多的精力投入到模型的优化和算法的研究上。 值得注意的是,虽然数据集的主要应用场景是红外光人体检测,但它同样适用于更广泛的红外图像处理。红外成像技术在夜间或低照度环境中具有显著优势,能够捕捉到人类肉眼难以辨识的信息,因此在军事侦察、夜视辅助驾驶等领域也有广泛的应用前景。 为了更好地理解数据集的构成和使用方法,数据集提供了一个相关的介绍链接。这个链接详细介绍了数据集的来源、用途以及如何下载和使用这些数据。通过这个链接,用户不仅能够获得数据集本身,还能获取到有关数据集使用方法的指导,这对于那些不熟悉YOLO格式或红外检测技术的研究者来说尤为重要。 这个红外光人体检测数据集是研究者在开发高效、准确的目标检测模型过程中的宝贵资源。通过使用这个数据集,开发者可以训练出在各种环境下都能稳定工作的检测模型,进而推动计算机视觉技术的发展和应用。
2025-06-26 16:39:12 779.87MB
1
清洗了的红外行人检测数据集,其中包括2921个数据集,数据集的标签格式为YOLO格式,能够直接用于YOLO系列模型的训练。 图像数据 全部相关数据集介绍链接: https://blog.csdn.net/weixin_49824703/article/details/147150512?spm=1001.2014.3001.5502 随着计算机视觉技术的发展,红外光行人检测成为了热门的研究领域。红外光由于其在低光照或夜间条件下的优越性能,使得基于红外图像的行人检测技术在安全监控、自动驾驶等应用中具有重要的实用价值。YOLO(You Only Look Once)模型作为当前流行的实时目标检测算法之一,它的高效性和准确性使得其成为诸多领域的首选。此次介绍的IR4红外光人体检测数据集,便是专门为YOLO系列模型训练而设计的。 该数据集包含了2921个红外图像样本,这些样本均经过清洗,去除了不必要的噪声和干扰因素,保证了数据的纯净性和高质量。数据集的标签格式符合YOLO模型的要求,即每个图像文件都配备有一个与之对应的标注文件,文件中用特定的格式记录了图像中行人位置的坐标和类别信息。这使得数据集可以直接用于YOLO模型的训练和验证,极大地提高了研究者的工作效率,缩短了模型开发的周期。 数据集中的每个图像文件均以"IR4_"为前缀,后接具体的序列号,如IR4_20250328_002512.png等,这样的命名方式有助于快速识别和管理大量的图像数据。每个图像文件均对应一个红外场景,通过红外摄像头拍摄得到,图像中的人体在热成像下以特定的颜色或亮度呈现,而背景则相对暗淡,这为行人检测提供了清晰的对比。 在使用该数据集进行模型训练时,研究者首先需要将数据集下载并解压。每个图像文件对应一个标注文件,标注文件中详细记录了图像中所有行人的位置信息。YOLO模型会将这些标注信息作为训练的目标,通过不断地迭代和优化,使模型学会从红外图像中准确地识别出行人。由于YOLO模型具有较高的检测速度和良好的检测精度,因此在实际应用中,使用IR4红外光人体检测数据集训练出的模型能够有效地实现实时行人检测。 此外,数据集还提供了一个相关介绍链接,该链接详细介绍了数据集的来源、格式、使用方法等内容。通过链接中的介绍,研究人员可以更加深入地了解数据集的背景知识,以及如何高效地利用这些数据进行模型训练和性能评估。这对于那些希望在红外行人检测领域取得突破的研究者来说,是一个宝贵的学习资源。 IR4红外光人体检测数据集为机器学习和计算机视觉领域的研究者提供了一个宝贵的资源。它不仅包含了大量的高质量红外图像样本,还提供了与YOLO模型直接兼容的标签格式,极大地便利了模型的训练过程。随着技术的不断进步,此类专用数据集的开发将有助于推动红外行人检测技术的发展,为安全监控、自动驾驶等应用领域提供更加准确可靠的解决方案。
2025-06-26 16:37:51 676.63MB
1
数据集-目标检测系列- 行李箱 检测数据集 suitcase >> DataBall 标注文件格式:xml​​ 项目地址:https://github.com/XIAN-HHappy/ultralytics-yolo-webui 通过webui 方式对ultralytics 的 detect 检测任务 进行: 1)数据预处理, 2)模型训练, 3)模型推理。 脚本运行方式: * 运行脚本: python webui_det.py or run_det.bat 根据readme.md步骤进行操作。 样本量: 180 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501
2025-06-25 17:08:17 6.9MB 数据集 目标检测 python yolo
1
标题中的“yolo行人跌倒检测数据集”指的是一个用于训练和评估YOLO(You Only Look Once)模型的数据集,该模型专门设计用于检测行人在图像中的跌倒情况。YOLO是一种实时目标检测系统,因其高效性和准确性在计算机视觉领域广泛应用。 YOLO,即You Only Look Once,是一个端到端的深度学习框架,它能够直接从原始图像中预测出边界框和类别概率,从而实现对目标的快速检测。YOLO的核心在于它的网络架构,通常包括卷积神经网络(CNN)层,用于特征提取,以及后续的检测层,用于生成边界框和分类得分。 数据集是机器学习和深度学习项目的基础,这个数据集包含1440张图片,每张图片都与相应的txt格式标注文件关联。txt标注文件通常包含了每个目标对象的边界框坐标和类别信息。对于行人跌倒检测,这些标注可能详细指明了跌倒行人的位置、大小以及状态(如跌倒还是站立)。 在YOLOv8这一标签中,我们可以推断这个数据集可能是基于较新的YOLO版本进行训练或测试的。YOLO的每个版本都有其独特的改进和优化,比如更快的速度、更高的精度或者更少的计算资源需求。YOLOv8可能引入了新的网络结构、损失函数或是训练策略,以提高对跌倒行人的识别能力。 至于数据集的使用,通常包括以下几个步骤: 1. 数据预处理:将图片和对应的txt标注文件加载到内存中,可能需要进行归一化、缩放等操作,使其适应模型的输入要求。 2. 划分数据集:将数据集分为训练集、验证集和测试集,用于模型训练、参数调整和性能评估。 3. 模型训练:使用训练集对YOLO模型进行训练,通过反向传播更新权重,以最小化预测结果与实际标注之间的差距。 4. 模型评估:使用验证集监控模型在未见过的数据上的性能,避免过拟合。 5. 超参数调整:根据验证集的表现调整模型的超参数,如学习率、批次大小等。 6. 最终测试:最后在独立的测试集上评估模型的泛化能力,确保模型在新数据上的表现良好。 总结来说,这个数据集是针对行人跌倒检测的,可以用于训练或改进YOLO模型,特别是其最新版本YOLOv8,以提高在现实世界场景中检测跌倒事件的能力。通过合理的数据处理和模型训练,可以构建一个对行人的安全起到预警作用的应用,尤其适用于监控摄像头等安全系统中。
2025-06-24 15:18:11 65.3MB 数据集 yolo
1
灭火器检测数据集VOC+YOLO格式包含3255张图像,这些图像均用于目标检测任务,且全部属于同一类别——灭火器。该数据集分为两种格式:Pascal VOC和YOLO格式,用以满足不同目标检测框架的需求。其中,VOC格式包含了图像的jpg文件以及对应的标注文件xml,而YOLO格式则提供了对应的txt文件。每张图像都经过了精确标注,共标注了6185个矩形框来标识图像中的灭火器。 数据集的标注类别名称为“miehuoqi”,共包括3255张jpg图片,每个图片都有一个对应的xml文件和txt文件。xml文件中的标注格式遵循Pascal VOC标准,它记录了图像中的每个灭火器的位置、类别以及框的大小;而txt文件则以YOLO格式记录,YOLO格式易于用于训练,其标注信息包括了中心点坐标、宽度和高度等。 为了保证标注的准确性和合理性,使用了标注工具labelImg。在标注过程中,通过画矩形框的方式标注出图像中灭火器的位置,并将这些信息记录在了标注文件中。对于数据集的使用者来说,这些标注信息是至关重要的,因为它们直接关系到目标检测模型的训练效果和检测准确性。 重要的是要注意,虽然该数据集提供了丰富的标注数据,但并不对使用该数据集训练出的模型或权重文件的精度作任何保证。数据集的提供方明确表示,他们不对模型性能提供任何形式的保证,因此用户在使用数据集时需要自行评估和验证模型的性能和准确性。 数据集中还包含了一些图片预览和标注例子,这些可以帮助用户直观地了解数据集的质量以及标注的具体方式,从而在模型训练之前对数据集进行更深入的分析和理解。灭火器检测数据集VOC+YOLO格式是一个针对特定应用场景——检测灭火器——而精心构建的数据集,它提供了丰富的图像资源和精确的标注信息,对于相关领域的研究和应用具有积极的推动作用。
2025-06-24 10:48:35 3.57MB 数据集
1
输电线异物检测数据集VOC-YOLO-4165张HD版是专为机器学习和深度学习研究而设计的,旨在帮助研究者训练和测试他们的目标检测算法。这个数据集包含4165张高分辨率(HD)的jpg格式图片,以及对应的标注文件,这些标注文件采用Pascal VOC格式的xml文件和YOLO格式的txt文件两种类型,不包含图片的分割路径txt文件。 该数据集的具体格式说明如下: - Pascal VOC格式:这是一种广泛使用的图像标注格式,主要用于目标检测任务。每个图片对应一个VOC格式的xml文件,其中包含了该图片中所有标注目标的详细信息,如目标的位置、尺寸和类别。 - YOLO格式:YOLO(You Only Look Once)是一种流行的目标检测系统,YOLO格式的标注文件是简单的文本文件,每个文件中记录了该图片中所有目标的类别和位置信息,通常采用中心点坐标加上宽度和高度的方式来表示。 标注内容详细信息: - 图片数量(jpg文件个数):4165张,表示数据集包含4165张图片。 - 标注数量(xml文件个数和txt文件个数):各为4165个,说明每张图片都有一个对应的VOC格式标注文件和一个YOLO格式标注文件。 - 标注类别数:1,表明数据集中只有一种类别的目标需要被检测,即“yw”。 - 标注类别名称:["yw"],在此数据集中,“yw”代表输电线上的异物。 - 每个类别标注的框数:yw框数 = 4417,意味着在所有的图片中,共标注了4417个异物的矩形框。 - 总框数:4417,表明数据集中标注的总目标数。 - 使用标注工具:labelImg,这是一个流行的开源图像标注工具,常用于创建Pascal VOC格式的标注文件。 - 标注规则:要求使用者对目标进行矩形框标注。 重要说明:数据集不提供任何保证关于由它训练出的模型或者权重文件的精度,这意味着用户在使用该数据集进行模型训练时,需要自行验证模型性能。 虽然数据集没有包含图片概览或者标注示例,但用户可以通过随机抽取几张图片以及对应的标注文件来理解标注的详细程度和质量,从而评估该数据集是否适用于他们的研究需求。
2025-06-23 16:38:44 2.13MB 数据集
1
在电力行业维护和监控中,电柜箱门把手作为关键部件,其状态的实时监测对于保障电力系统安全运行至关重要。目标检测技术在自动化监控系统中发挥着重要作用,能够实时识别并定位门把手的存在与状态。当前,随着深度学习技术的飞速发展,目标检测算法尤其是卷积神经网络(CNN)已被广泛应用于各种图像识别任务中。然而,算法训练需要大量的标注数据集作为支撑,因此高质量且领域相关的数据集成为研究与应用的基石。 本数据集的发布,为电力行业特定场景下目标检测任务提供了必要的工具和资源。该数据集包含1167张电力场景下电柜箱门把手的图片,每张图片都经过了精确的标注工作。数据集采用两种流行的目标检测格式——Pascal VOC格式和YOLO格式,提供了相应的标注信息。Pascal VOC格式包括jpg图片文件与对应的xml标注文件,而YOLO格式则包含txt文件,用于标注目标的中心点坐标和宽高信息。 标注过程中采用了labelImg这一广泛使用的标注工具,以矩形框的形式对目标进行标记。每张图片都对应一个xml文件和一个txt文件,分别用于存储VOC格式和YOLO格式的标注数据。标注类别仅有一个,名为"red",这是由于图片场景中电柜箱门把手的特征较为单一,统一归类为"red"。所有标注的矩形框总和为1164个,意味着在1167张图片中,绝大部分都成功标注了目标。 电力场景的特定性意味着这类数据集可能与通用数据集有所区别,场景可能相对单一,但这也是为了保证标注的准确性和一致性。图片示例清晰地展示了如何对电力场景下的电柜箱门把手进行标注,这对数据集的使用者来说具有很好的指导作用。 尽管数据集为电力行业目标检测提供了宝贵的资源,但需要特别强调的是,本数据集不对通过其训练所得的模型或权重文件的精度提供任何形式的保证。数据集的使用者在使用数据集进行模型训练时,需要保持谨慎的态度,对数据集的性质和应用场景有一个清晰的认识。此外,标注图片示例的提供,有助于用户更好地理解和掌握标注规则,以确保数据集在模型训练中发挥最大的效用。 这份数据集是电力行业目标检测研究领域的重要资源,它不仅为相关领域的研究者和工程师提供了大量经过精心标注的高质量图像,还为基于深度学习的目标检测模型训练提供了实践平台。通过使用该数据集,研究人员能够训练出更加精准的检测模型,从而为电力系统的自动化监控和维护贡献力量。同时,本数据集也展现了数据标注的重要性和专业性,为其他领域数据集的创建提供了参考。
2025-06-23 08:52:45 3.67MB 数据集
1
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
2025-06-21 16:17:38 42KB 目标检测 yolo
1
无人机视角禁止游泳检测数据集VOC+YOLO格式20604张5类别.docx
2025-06-21 14:07:55 2.07MB 数据集
1
在现代工业制造流程中,铝片作为重要的基础材料广泛应用于航空、汽车、建筑等领域。然而,在铝片的生产和加工过程中,表面可能产生各种缺陷,这些缺陷可能会影响产品的使用性能和寿命。因此,铝片表面缺陷检测技术对于保障产品品质和提升生产效率至关重要。本文介绍了一套针对铝片表面工业缺陷的检测数据集,该数据集以VOC和YOLO格式提供,共计400张jpg格式的铝片表面图片及其对应的标注文件。 数据集特点: 1. 数据集数量:包含400张铝片表面图片。 2. 标注格式:遵循Pascal VOC和YOLO两种通用的目标检测标注格式。 3. 标注内容:每张图片均采用矩形框标注出铝片表面的缺陷区域。 4. 类别与数量:标注涉及四个类别,具体包括“ca_shang”(擦伤)、“zang_wu”(脏污)、“zhe_zhou”(折皱)、“zhen_kong”(针孔),各分类的缺陷数量分别为270、456、124和212。 5. 标注工具:使用广泛认可的LabelImg工具进行标注。 6. 标注规则:所有缺陷区域采用矩形框进行标注。 应用领域: 1. 制造业质量控制:铝片生产商和使用者可用于提升产品质量检测能力。 2. 计算机视觉研究:为研究者提供真实的工业视觉问题数据集,便于算法开发和评估。 3. 机器学习与深度学习:作为目标检测模型的训练和测试素材,推动AI技术在工业检测领域的应用。 注意事项: 尽管数据集能够提供准确的缺陷标注示例,但它不保证使用这些数据训练出的模型的准确度和性能。因此,本数据集主要用于提供准确标注的训练材料,用于工业缺陷检测模型的开发与训练。研究者和工程师在使用数据集进行模型训练时,需自行评估模型效果并调整模型参数。 对于深度学习领域的研究者和工程师而言,该数据集是一个宝贵的资源,能够辅助他们在铝片表面缺陷检测领域进行算法开发与优化。随着深度学习技术的不断进步,未来将能够实现更加高效、准确的铝片表面缺陷检测,进一步推动工业生产自动化和智能化进程。
2025-06-19 20:59:27 769KB 数据集
1