非参数回归广泛应用于许多科学和工程领域,例如图像处理和模式识别。 非参数回归即将估计一个随机变量的条件期望: E(Y|X) = f(X) 其中 f 是一个非参数函数。 基于核密度估计技术,该代码实现了所谓的 Nadaraya-Watson 核回归算法,特别是使用高斯核。 回归的默认带宽来自文献中建议的高斯核密度估计的最佳弯曲宽度。 代码还可以处理丢失的数据。
2021-12-21 14:34:33 1KB matlab
1
基于lstm算法在MATLAB对短期风速进行预测(Based on LSTM algorithm, short-term wind speed was predicted in MATLAB)
2021-12-20 18:03:22 149KB LSTM
EDA和ML项目 存储库包含各种项目,这些项目都使用R语言编写了以下代码: 探索性数据分析 机器学习模型(线性回归,逻辑回归,k均值聚类,分层聚类,SVM,决策树,随机森林,时间序列分析,XGBoost) 以下是一些常用的程序包/库的列表,这些程序包/库被用作数据分析和构建机器学习模型的一部分 数据处理: dplyr,plyr,tidyr,stringer,data.table,lubridate(用于日期处理), 数据可视化: ggplot2,cowplot,ggthemes,比例 ML模型: randomForest,caret(用于数据拆分,交叉验证,预处理,特征选择,变量重要性估计等) 推荐模型: re荐 文本挖掘: tm,tidyverse
2021-12-17 12:54:13 26.84MB r random-forest clustering linear-regression
1
梅蒂斯-路德 电影票房数据的网络抓取和线性回归(第 2-3 周) -
1
LASSO回归 使用L1罚分执行正则化最小二乘回归。 给定一个响应变量Y和一个预测变量X的向量,则线性回归模型定义为 其中beta_0是截距系数, beta是预测系数的向量。 给定数据点(x_1,y_1),...,(x_N,y_N) ,此程序包使用LASSO估计回归系数。 这个L1惩罚回归分析惩罚了非零系数,其拟合通过解决以下问题获得: lambda参数确定放置在beta向量的L1范数上的罚分大小。 L1规范定义为 当lambda = 0 ,问题简化为多元线性回归,而lambda -> ∞将导致仅截距模型。 正如我们观察到的那样,对于非零罚分,LASSO将系数估计值缩减为零,这使LASSO可以进行模型选择:增加lambda ,对解释Y没多大贡献的预测变量将倾向于从模型中删除。 安装 $ npm install compute-lasso-regression 要在浏览器中使用
2021-12-14 14:07:44 26KB JavaScript
1
线性回归 在python中实现线性回归模型
2021-12-14 09:55:53 1.25MB Python
1
svr matlab代码下载支持向量回归 该项目是在 Matlab 中使用 LIBSVM(支持向量机库)完成的。 以下是您需要遵循的步骤,以便下载 Libsvm 并运行代码。 LIBSVM 的MATLAB 界面: 目录 • 安装(LIBSVM) • 项目执行步骤 安装 在Windows 系统上,预编译的二进制文件已经在'...\windows' 目录中,因此无需进行安装。 现在我们只为 Windows 上的 64 位 MATLAB 提供二进制文件。 如果您想重新构建包,请依赖以下步骤。 我们建议在 MATLAB 和 OCTAVE 上使用 make.m。 只需键入“make”即可构建“libsvmread.mex”、“libsvmwrite.mex”、“svmtrain.mex”和“svmpredict.mex”。 在 MATLAB 上:>> make 如果 make.m 在 MATLAB 上不起作用(尤其是对于 Windows),请尝试使用 'mex -setup' 为 mex 选择合适的编译器。 确保您的编译器可访问且可用。 然后输入'make'开始安装。 示例:matlab>> m
2021-12-13 13:26:01 1.3MB 系统开源
1
使用机器学习技术预测肝炎疾病 内容 1.简介2.属性3.框图4.算法和分类器5.获得的结果6.结论 介绍 医学诊断是一项重要且非常复杂的任务,需要准确识别。 重要的是要在适当的时间诊断出疾病并尽早治愈。 肝脏是人体的重要组成部分。 影响肝功能的严重疾病之一是肝炎,它会引起肝脏炎症。 这项工作的主要目的是通过使用不同的ML工具和神经网络体系结构训练同一数据集,并选择那些诊断肝炎疾病的最佳工具来对特定数据集进行比较研究。 属性 属性 价值 年龄 否(1),是(2) 数值 否(1),是(2) 性别 否(1),是(2) 男(1),女(2) 否(1),是(2) 类固醇 否(1),是(2)v 大肝 否(1),是(2) 肝脏公司 否(1),是(2) 蜘蛛网 否(1),是(2) 抗病毒药 否(1),是(2) 疲劳 否(1),是(2) 马拉丝 否(1),是(2) 脾可触及 否
1
高斯过程回归的直观教程 ,女王大学的,加拿大金斯敦 笔记本可以在以下位置执行 笔记本的: @misc{wang2020intuitive, title={An Intuitive Tutorial to Gaussian Processes Regression}, author={Jie Wang}, year={2020}, eprint={2009.10862}, archivePrefix={arXiv}, primaryClass={stat.ML} } 本教程的读者是想使用GP但又不适应GP的人。 在阅读完教科书《高斯机器学习过程》 [ ]的前两章后,我发生了这种情况。 由于难以理解该理论,因此GP的使用与使用它之间存在差距。 当我在线阅读教科书和观看教程视频时,我可以毫无困难地跟随大多数人。 内容对我来说很有意义。 但是,即
2021-12-12 11:01:33 32.01MB JupyterNotebook
1
matlab 图像膨胀代码具有稀疏约束的多核回归 概述: i) MATLAB implementation of learning using multiple kernels with gTV regularization ii) Comparison with other kernel methods in a simple numerical example. 只要用户引用以下文章,就允许使用这些代码: S. Aziznejad, M. Unser, "An L1 Representer Theorem for Multiple-Kernel Regression," arXiv:1811.00836 [cs.LG] 要求: i) GlobalBioIm library: https://github.com/Biomedical-Imaging-Group/GlobalBioIm ii) SimpleMKL package: http://asi.insa-rouen.fr/enseignants/~arakoto/code/mklindex.html 说明: Example.
2021-12-11 23:46:59 9KB 系统开源
1