lasso-regression:LASSO回归(带L1罚分的正则回归)-源码

上传者: 42099176 | 上传时间: 2021-12-14 14:07:44 | 文件大小: 26KB | 文件类型: -
LASSO回归 使用L1罚分执行正则化最小二乘回归。 给定一个响应变量Y和一个预测变量X的向量,则线性回归模型定义为 其中beta_0是截距系数, beta是预测系数的向量。 给定数据点(x_1,y_1),...,(x_N,y_N) ,此程序包使用LASSO估计回归系数。 这个L1惩罚回归分析惩罚了非零系数,其拟合通过解决以下问题获得: lambda参数确定放置在beta向量的L1范数上的罚分大小。 L1规范定义为 当lambda = 0 ,问题简化为多元线性回归,而lambda -> ∞将导致仅截距模型。 正如我们观察到的那样,对于非零罚分,LASSO将系数估计值缩减为零,这使LASSO可以进行模型选择:增加lambda ,对解释Y没多大贡献的预测变量将倾向于从模型中删除。 安装 $ npm install compute-lasso-regression 要在浏览器中使用

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明