Linear-regression
2021-12-25 20:51:12 35KB JupyterNotebook
1
房价,高级回归技术 Kaggle完成 用于
2021-12-24 15:33:48 74KB JupyterNotebook
1
鲁棒非线性回归:使用维纳模型和稀疏性优化的鲁棒非线性回归
1
Bayesian and Frequentist Regression Methods
2021-12-22 14:18:36 9.79MB Bayesian and Frequentist Regression
1
随机森林回归 森林随机回归
2021-12-21 17:16:24 2KB Python
1
非参数回归广泛应用于许多科学和工程领域,例如图像处理和模式识别。 非参数回归即将估计一个随机变量的条件期望: E(Y|X) = f(X) 其中 f 是一个非参数函数。 基于核密度估计技术,该代码实现了所谓的 Nadaraya-Watson 核回归算法,特别是使用高斯核。 回归的默认带宽来自文献中建议的高斯核密度估计的最佳弯曲宽度。 代码还可以处理丢失的数据。
2021-12-21 14:34:33 1KB matlab
1
基于lstm算法在MATLAB对短期风速进行预测(Based on LSTM algorithm, short-term wind speed was predicted in MATLAB)
2021-12-20 18:03:22 149KB LSTM
EDA和ML项目 存储库包含各种项目,这些项目都使用R语言编写了以下代码: 探索性数据分析 机器学习模型(线性回归,逻辑回归,k均值聚类,分层聚类,SVM,决策树,随机森林,时间序列分析,XGBoost) 以下是一些常用的程序包/库的列表,这些程序包/库被用作数据分析和构建机器学习模型的一部分 数据处理: dplyr,plyr,tidyr,stringer,data.table,lubridate(用于日期处理), 数据可视化: ggplot2,cowplot,ggthemes,比例 ML模型: randomForest,caret(用于数据拆分,交叉验证,预处理,特征选择,变量重要性估计等) 推荐模型: re荐 文本挖掘: tm,tidyverse
2021-12-17 12:54:13 26.84MB r random-forest clustering linear-regression
1
梅蒂斯-路德 电影票房数据的网络抓取和线性回归(第 2-3 周) -
1
LASSO回归 使用L1罚分执行正则化最小二乘回归。 给定一个响应变量Y和一个预测变量X的向量,则线性回归模型定义为 其中beta_0是截距系数, beta是预测系数的向量。 给定数据点(x_1,y_1),...,(x_N,y_N) ,此程序包使用LASSO估计回归系数。 这个L1惩罚回归分析惩罚了非零系数,其拟合通过解决以下问题获得: lambda参数确定放置在beta向量的L1范数上的罚分大小。 L1规范定义为 当lambda = 0 ,问题简化为多元线性回归,而lambda -> ∞将导致仅截距模型。 正如我们观察到的那样,对于非零罚分,LASSO将系数估计值缩减为零,这使LASSO可以进行模型选择:增加lambda ,对解释Y没多大贡献的预测变量将倾向于从模型中删除。 安装 $ npm install compute-lasso-regression 要在浏览器中使用
2021-12-14 14:07:44 26KB JavaScript
1