在PyTorch和PyTorch Lightning中生成深度学习模型的实现 DCGAN 论文: 作者:Alec Radford,Luke Metz,Soumith Chintala 代码(PyTorch): 由 码(闪电): 由 去做 DCGAN Pix2Pix 循环GAN SRGAN
2021-11-02 11:09:05 2.24MB pytorch generative-adversarial-network dcgan gans
1
图像超分辨率重建( super - resolution,SR) 是指从观测到的低分辨率图像重建出相应的高.分辨率图像,在目标检测、医学成像和卫星遥感等领域都有着重要的应用价值. 近年来,随着深度.学习的迅速发展,基于深度学习的图像超分辨率重建方法取得了显著的进步. 为了把握目前基于.深度学习的图像超分辨率重建方法的发展情况和研究热点,对一些最新的基于深度学习的图像.超分辨率重建方法进行了梳理,将它们分为两大类( 有监督的和无监督的) 分别进行阐述. 然后,.在公开的数据集上,将主流方法的性能进行了对比分析. 最后,对基于深度学习的图像超分辨率.重建方法进行了总结,并对其未来的研究趋势进行了展望.
1
PyTorch GAN :laptop:与 :laptop: = :red_heart: 此仓库包含各种GAN架构的PyTorch实现。目的是使初学者更容易开始玩和学习GAN。 我发现的所有存储库都掩盖了某些内容,例如将某些网络层中的偏向设置为False而没有解释为什么要做出某些设计决定。此仓库使每个设计决策透明。 目录 什么是GAN? GAN最初是由Ian Goodfellow等人提出的。在一份名为“的开创性论文中。 甘斯是一个框架,2个模型(通常为神经网络),称为发电机(G)和鉴别器(d),玩游戏极大极小彼此抵靠。生成器正在尝试学习真实数据的分布,这是我们通常感兴趣的网络。在游戏中,生成器的目的是欺骗鉴别器“思考”它生成的数据是真实的。另一方面,鉴别器的目的是正确地区分生成的(伪)图像和来自某些数据集(例如MNIST)的真实图像。 设置 git clone https://github.com/gordicaleksa/py
2021-11-01 11:04:11 65.9MB python machine-learning deep-learning pytorch
1
PyTorch生成对抗网络(DCGAN)代码
2021-10-30 21:07:04 4KB PyTorch生成对抗网络 DCGAN
使用条件生成对抗网络进行图像去雨 [] [] 何章,Vishwanath Sindagi,Vishal M.Patel 在本文中,我们研究了解决单图像去水印问题的新观点。 我们不仅要确保决定什么是实现良好的定量和定性性能的良好先验或良好框架,还应确保排水良好的图像不会降低给定计算机视觉算法(如检测和分类)的性能。 换句话说,消除雨水的结果应该与其对应的清晰图像与给定的鉴别器没有区别。 通过使用最近引入的条件生成对抗网络(GAN),可以将该标准直接合并到优化框架中。 为了最大程度地减少GAN引入的伪像并确保更好的视觉质量,引入了新的精确损失函数。 @article{zhang2017image, title={Image De-raining Using a Conditional Generative Adversarial Network}, author={Zhan
2021-10-28 20:18:27 2.7MB deep-learning gan id-cgan rain-removal
1
针对多模态图像融合中多尺度几何工具和融合规则设计困难的问题,提出一种基于生成对抗网络(GANs)的图像融合方法,实现了多模态图像端到端的自适应融合。将多模态源图像同步输入基于残差的卷积神经网络(生成网络),通过网络的自适应学习生成融合图像;将融合图像和标签图像分别送入判别网络,通过判别器的特征表示和分类识别逐渐优化生成器,在生成器和判别器的动态平衡中得到最终融合图像。与具有代表性的融合方法相比,实验结果表明,本文方法的融合结果更干净,没有伪影,提供了更好的视觉质量。
2021-10-26 16:25:39 12.19MB 图像处理 图像融合 多模态图 深度学习
1
针对数据集样本数量较少会影响深度学习检测效果的问题,提出了一种基于改进生成对抗网络和MobileNetV3的带钢缺陷分类方法。首先,引入生成对抗网络并对生成器和判别器进行改进,解决了类别错乱问题并实现了带钢缺陷数据集的扩充。然后,对轻量级图像分类网络MobileNetV3进行改进。最后,在扩充后的数据集上训练,实现了带钢缺陷的分类。实验结果表明,改进的生成对抗网络可生成比较真实的带钢缺陷图像,同时解决深度学习中样本不足的问题;且改进的MobileNetV3参数量是原有参数量的1/14左右,准确率为94.67%,比改进前提高了2.62个百分点,可在工业现场对带钢缺陷进行实时准确的分类。
2021-10-26 14:01:13 2.71MB 图像处理 缺陷检测 图像分类 生成对抗
1
针对传统使用脉间参数难以识别低信噪比条件下的复杂体制雷达信号问题,提出了一种利用深度学习模型辅助训练并对雷达辐射源进行识别的方法。首先利用时频分析的方法产生雷达信号的时频图像作为训练集1。接着利用深度卷积生成对抗网络的样本学习能力在训练集1的基础上二次生成时频图像作为训练集2,训练集2相对于1拥有着去噪和数据增强的效果。最后利用训练集2辅助视觉几何组在训练集1上的训练进行雷达辐射源识别。对5种常见的雷达信号进行了仿真实验,实验结果验证了该方法的有效性。
1
KERAS-DCGAN 具有(awesome) 库的实现,用于通过深度学习生成人工图像。 这将在真实图像上训练两个对抗性深度学习模型,以产生看起来真实的人工图像。 生成器模型尝试生成看起来真实的图像,并从鉴别器中获得高分。 鉴别器模型试图区分生成器的真实图像和人工图像。 这假设theano排序。 您仍然可以通过在〜/ .keras / keras.json中设置“ image_dim_ordering”:“ th”与tensorflow一起使用(尽管这样做会更慢)。 用法 训练: python dcgan.py --mode train --batch_size <batch_si
2021-10-20 13:54:57 838KB deep-learning keras gan dcgan
1
generative_adversarial_networks_101:生成对抗网络的Keras实现。 具有MNIST和CIFAR-10数据集的GAN,DCGAN,CGAN,CCGAN,WGAN和LSGAN模型
2021-10-18 15:09:09 3.08MB deep-learning tensorflow keras jupyter-notebook
1