ID-CGAN:使用条件生成对抗网络进行图像去雨

上传者: 42118701 | 上传时间: 2021-10-28 20:18:27 | 文件大小: 2.7MB | 文件类型: -
使用条件生成对抗网络进行图像去雨 [] [] 何章,Vishwanath Sindagi,Vishal M.Patel 在本文中,我们研究了解决单图像去水印问题的新观点。 我们不仅要确保决定什么是实现良好的定量和定性性能的良好先验或良好框架,还应确保排水良好的图像不会降低给定计算机视觉算法(如检测和分类)的性能。 换句话说,消除雨水的结果应该与其对应的清晰图像与给定的鉴别器没有区别。 通过使用最近引入的条件生成对抗网络(GAN),可以将该标准直接合并到优化框架中。 为了最大程度地减少GAN引入的伪像并确保更好的视觉质量,引入了新的精确损失函数。 @article{zhang2017image, title={Image De-raining Using a Conditional Generative Adversarial Network}, author={Zhan

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明