流量预测 拟议的概念证明,用于解决智​​能城市的交通拥堵和预测问题。 二手-LSTM(用于将来的预测)+ CNN(用于检测流量密度)+实时推文将所有这三种方法结合起来以产生流量拥塞因子(TCF),并在将来的任何时候使用Google API提出基于此的路由建议。 内容 - 公用文件夹- 截至9月18日的TCF数据 LSTM预计到9月18日的时间 src文件夹-React应用程序 实用程序文件- tweets_realtime.py-删除有关流量的地理位置标记的tweets tempserver-临时服务器,将所有从抓取中获得的推文排队,并充当React应用程序的API。 屏幕截图 注意:代码清理仍在进行中,该项目是为黑客马拉松而设计的
2021-12-06 09:32:53 1.79MB HTML
1
手势检测 数据集 依存关系: 张量流 autoware_msgs 跑步: 运行YOLO2 $ roslaunch cv_tracker yolo2.launch 主要代码: $ rosrun traffic_gesture_recognition ros_gesture_detection.py 筛选: $ rosrun traffic_gesture_recognition gesture_filter.py 显示调试图像: $ rosrun image_view image_view image:=/police_gesture/image_overlay 切换调试映像: $ rosservice call /set_debug "data: true" $ rosservice call /set_debug "data: false" 切换警察检测 $ r
2021-12-05 12:10:31 28KB Python
1
用于软件定义的网络路由优化的深度强化学习方法 :乔治·(Giorgio Stampa),玛塔·阿里亚斯(Marta Arias),大卫·桑切斯·查尔斯(David Sanchez-Charles),维克多·芒特斯·穆勒(Victor Muntes-Mulero),阿尔伯特·卡贝洛斯(Albert Cabellos) 在本文中,我们设计和评估了可以优化路由的深度强化学习代理。 我们的代理会自动适应当前的流量状况,并提出量身定制的配置,以尽量减少网络延迟。 实验显示非常有前途的性能。 而且,相对于传统的优化算法,该方法具有重要的操作优势。 代码和数据集。 Keras和Deep确定性策略梯度可
1
一个非常简单的PHP网站流量抓取工具,极易部署,兼容Windows、Linux、Macos,可用与日常流量分析和AWD线下攻防流量抓取
2021-12-04 13:00:04 2KB 流量抓取 PHP AWD CTF
1
网络流量异常的检测和分类 实验基于 数据集的版本。 1.先决条件 1.1。 安装项目依赖项 不 姓名 版本 描述 1个 3.8.8 程式语言 2个 0.24.1 Python机器学习工具 3 1.19.5 Python科学计算工具 4 1.2.2 Python中的数据分析和数据处理工具 5 3.3.4 用Python可视化 6 0.11.1 统计数据可视化 7 5.8.0 跨平台库,用于检索Python中正在运行的进程和系统利用率(CPU,内存,磁盘,网络,传感器)的信息 8 0.3.7 可视化库 9 -- 用于模型序列化的Python对象序列化 1.2。 下载并提取数据集 下载的较轻版本(存档大小-8.8 GB) 较轻的版本仅包含带标签的流,而没有pcaps文件 提取档案(大小-大约44 GB) 2.安装项目 克隆此仓库 安装缺少的库 打开config.py并
1
用pyhton编写的IDM模型,可以实现交通流仿真,包括跟驰和换道
2021-11-22 22:55:50 276KB python 跟驰 换道模型 交通流
颜色分类leetcode 交通标志识别 语境 在这个项目中,我将解释如何构建一个深度学习模型来识别交通标志。 它旨在成为一种学习体验,对于我自己和其他喜欢在这里学习的人来说,我将专注于实践方面。 我将描述我自己构建这个模型的经验并分享源代码。 这适合那些已经了解 Python 和机器学习基础知识,但想要亲身体验并练习构建真实应用程序的人。 在这一部分中,我将解释图像分类,并将使模型尽可能简单,涵盖卷积网络、数据增强和对象检测。 项目的问题陈述和目标 我在这里使用的数据集是德国交通标志基准,是在 2011 年国际神经网络联合会议 (IJCNN) 上举行的多类、单图像分类挑战。 交通标志检测是一个高度相关的计算机视觉问题,是汽车等行业中许多应用的基础。交通标志可以在颜色、形状以及象形图或象形图的存在方面提供各种类别之间的广泛变化。文本。 在这个项目中,我将开发一种深度学习算法,该算法将对德国交通标志图像进行训练,然后对未标记的交通标志进行分类。 深度学习模型将使用 tensorflow 构建,我们还将了解使用 OpenCV 预处理图像的各种方法,并使用云 GPU 服务提供商。 该项目的细分
2021-11-21 16:10:03 179KB 系统开源
1
加州交通事故可视化 2003 年至 2012 年加利福尼亚州交通事故数据的简单 24x7 图表。 数据来源于 由创建 要创建 csv,请在包含来自上述 SWITRS 链接的数据的目录中的 sqlite3 命令行会话中运行以下命令: .mode csv .import collisions_2003to2012.csv collisions .headers on .output csv SELECT CAST(TIME_ AS INTEGER) / 100 AS HOUR, DAYWEEK, COUNT(*) AS TOTAL, SUM(CAST(ETOH == 'Y' AS INTEGER)) AS ALCOHOLRELATED, SUM(CAST(CRASHSEV == 1 AS INTEGER)) AS FATAL, S
2021-11-17 14:45:42 11KB JavaScript
1
prtg.traffic.grapher.v6.1.1.855(之前的解压不了)
2021-11-15 11:22:58 33.02MB prtg.traffic
1