决策树分类器 使用Python的决策树分类器sklearn。
2022-02-18 18:35:56 13KB JupyterNotebook
1
网络流量异常的检测和分类 实验基于 数据集的版本。 1.先决条件 1.1。 安装项目依赖项 不 姓名 版本 描述 1个 3.8.8 程式语言 2个 0.24.1 Python机器学习工具 3 1.19.5 Python科学计算工具 4 1.2.2 Python中的数据分析和数据处理工具 5 3.3.4 用Python可视化 6 0.11.1 统计数据可视化 7 5.8.0 跨平台库,用于检索Python中正在运行的进程和系统利用率(CPU,内存,磁盘,网络,传感器)的信息 8 0.3.7 可视化库 9 -- 用于模型序列化的Python对象序列化 1.2。 下载并提取数据集 下载的较轻版本(存档大小-8.8 GB) 较轻的版本仅包含带标签的流,而没有pcaps文件 提取档案(大小-大约44 GB) 2.安装项目 克隆此仓库 安装缺少的库 打开config.py并
1
ML-ATIC 在 API的帮助下,基于机器学习方法的异常流量识别分类器。 这是我的本科毕业设计代码。 而且代码中会有很多错误。 无论如何,在训练模型和评估中可能有一些不合适的方法。 欢迎您发现它。 有任何疑问,请给我发电子邮件! 要求 Java SE 7 Maylib中的Jars 来自KDDCUP99的数据,我使用受计算资源限制的10%版本。 安装 将TrainAndTest.zip和Model.zip解压缩到数据文件中。 通过添加原始数据的头对Train.arff和Test.arff进行了预处理。 如果有兴趣,您可以打开它,然后进行探索。 Java文件中有一些字符编码问题,它们是UTF-8和GB18030。 并可能在注释中导致一些错误。 文件模型包含一些训练有素的模型,可以直接使用。 您还可以通过运行BuildTree.java,TestBP.java和TestLibs
1