traffic-congestion-prediction:拟议的概念证明,可通过使用LSTM(用于未来预测)+ CNN(用于检测交通密度)+使用推文来解决智能城市的交通拥堵和预测问题,并结合使用这三种方法产生交通拥堵因子,并基于此使用建议交通路线将来随时可以使用Google API-源码

上传者: 42176612 | 上传时间: 2021-12-06 09:32:53 | 文件大小: 1.79MB | 文件类型: -
流量预测 拟议的概念证明,用于解决智​​能城市的交通拥堵和预测问题。 二手-LSTM(用于将来的预测)+ CNN(用于检测流量密度)+实时推文将所有这三种方法结合起来以产生流量拥塞因子(TCF),并在将来的任何时候使用Google API提出基于此的路由建议。 内容 - 公用文件夹- 截至9月18日的TCF数据 LSTM预计到9月18日的时间 src文件夹-React应用程序 实用程序文件- tweets_realtime.py-删除有关流量的地理位置标记的tweets tempserver-临时服务器,将所有从抓取中获得的推文排队,并充当React应用程序的API。 屏幕截图 注意:代码清理仍在进行中,该项目是为黑客马拉松而设计的

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明