基于深度学习LSTM的流量预测 完整代码+项目 可直接运行
2023-04-04 11:02:52 220.41MB 深度学习 lstm 软件/插件
1
Matlab实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测(完整源码和数据) 命令窗口输出MAE、MAPE、MSE、R2、MSE等指标。 优化学习率、隐藏层节点数、正则化系数。
2023-04-03 22:23:22 417KB matlab 网络 lstm 回归
软件主要实现的功能是在最少的人为干预下创作一首短曲,并将其播放。目前市面上的音乐生成器,大多是基于Simple RNN和谷歌开发的WaveNet实现的,然而由于模型的局限性,使用这两种模型生成出的音乐同质化严重,听感欠佳。为了改进上述不足,提高生成音乐的质量,本组准备在软件的核心部分采用LSTM(长短期记忆网络,Long Short-Term Memory)模型。
2023-04-03 21:22:03 456KB 机器学习 深度学习 LSTM
1
LSTM是关于遗传算法优化lstm算法的层数和全连接层数及每层神经元的个数 本文的主要内容如下: 1.本文章是对lstm网络的优化,优化的参数主要有:lstm层的层数,lstm隐藏层的神经元个数,dense层的层数,dense层的神经元个数 2.本文章利用的是遗传算法进行优化,其中编码形式并未采用2进制编码,只是将2数组之间的元素交换位置。 3.本文的lstm和dense的层数都在1-3的范围内,因为3层的网络足以拟合非线性数据 4.程序主要分为2部分,第一部分是lstm网络的设计,第二部分是遗传算法的优化。 # 这里将生成一个8维的2进制数,并转换层成bool类型,true表示该位置交叉,False表示不交叉 cross_points = np.random.randint(0, 2, size=DNA_size_max).astype(np.bool) # 用True、False表示是否置换 # 这一部分主要是对针对不做变异的部分 for i, point in
2023-03-21 18:05:24 7KB python 遗传算法 lstm 时间序列预测
1
先决条件: nltk(TweetTokenizer) 凯拉斯张量流麻木科学的gensim(如果您使用的是word2vec) itertools 克隆存储库: git clone :AniSkywalker / SarcasmDetection.git cd SarcasmDetection / src / 您可以在以下链接中找到经过训练的模型文件 在/ resource / text_model / weights /中下载经过训练的模型 运行脚本: python sarcasm_detection_model_CNN_LSTM_DNN.py 如果要使用自己的数据训练模型,可以将“训练,开发
2023-03-20 21:21:46 3.17MB twitter keras cnn lstm
1
基于训练好的语言模型(使用gensim的word2vecAPI),编写了一个情感分类模型,包含一个循环神经网络模型(LSTM)和一个分类器(MLP)。首先,将一个句子中的每个单词对应的词向量输入循环神经网络,得到句子的向量表征。然后将句向量作为分类器的输入,输出二元分类预测,同样进行loss 计算和反向梯度传播训练,这里的 loss 使用交叉熵 loss。
2023-03-19 15:08:18 12KB nlp pytorch lstm rnn
1
非常好的机器学习深度学习课件,(十三)RNN和LSTM.pptx
2023-03-19 10:31:52 3.34MB 机器学习 深度学习
1
使用LSTM模型进行时序预测的代码与说明见:https://blog.csdn.net/Q_M_X_D_D_/article/details/109366895
2023-03-18 09:48:12 142KB lstm 软件/插件
1
孪生LSTM网络(Siamese-LSTM) 本项目是基于孪生LSTM网络+注意力机制+曼哈顿距离(Manhattan distance)实现的句对相似度计算。 中文训练数据为蚂蚁金服句对数据,约4万组,正负样本比例1:3.6;英文训练数据来自Kaggle上的Quora句对数据,约40万组,正负样本比例1:1.7。新增一组翻译数据:使用Google Translator将Quora数据翻译成中文。 资料 参考文献 中国大陆可能无法访问《How to predict...Manhattan LSTM》一文,请直接查看本项目中附件之参考博客 其它数据 英文词向量: 英文词向量: 中文词向量: 工程参考 Original author's GitHub 一些网络设计思路 使用 训练 $ python3 train.py $ type cn for Chinese Data or en for
2023-03-17 22:42:46 40.91MB keras attention manhattan-distance siamese-lstm
1
可以保存加载模型、有评价指标和训练过程的损失正确率图像,预测值和真实值对比等、正确率很高 绝对不是垃圾代码!!!!
2023-03-15 18:30:31 10.91MB python 机器学习 卷积神经网络 LSTM
1