基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出
2025-03-06 16:32:41 73KB 网络 matlab lstm
1
多算法模型(BI_LSTM GRU Mamba ekan xgboost)实现功率预测。包括数据处理、特征工程、模型训练、模型推理和结果输出,最终结果以 JSON 格式返回。可灵活替换模块和数据集。实现轻松上手,快速训练快速推理。项目代码如下 data/ │ ├── data_process1.py # 数据预处理代码 ├── data_process.csv # 预处理数据文件 └── 91-Site_1A-Trina_10W.csv # 原始数据文件 inference/ │ ├── myprocessor.py # 推理主代码入口 ├── logs/ # 日志文件路径 │ └── logging.log # 推理日志文件 ├── config/ # 配置文件路径 │ └── config.yaml # 推理配置文件 ├── output/ # 推理输出路径 │ └── ...
2025-03-05 14:03:34 41.05MB 功率预测 机器学习 人工智能
1
主要内容:本文详细介绍了在MATLAB环境中通过鲸鱼优化算法(WOA)来优化卷积长短期记忆网络(CNN-LSTM)以实现高效的数据分类与预测的方法。项目不仅提供了理论概述和设计思路,还包含了完整代码及合成数据样本。涵盖了从基础知识到模型优化的设计流程。 适合人群:对于深度学习及机器学习感兴趣的研究员和工程师。 使用场景及目标:适用于各种类型数据的分类及预处理,在需要进行复杂数据集处理的情况下能提供更好的预测效果。 其他说明:文中给出了详细的设计指导和具体的执行脚本,方便读者理解和实践。同时,项目允许在特定应用场景下定制和调参,增强了方法的实用性。
2024-11-18 17:13:49 37KB 鲸鱼算法 MATLAB环境
1
lstm时间序列预测 在这个示例中,我们首先设置了模型的超参数,然后准备了一个正弦波作为时间序列数据。接着,我们定义了LSTM模型类和训练过程,使用MSE损失和Adam优化器对模型进行优化。最后,我们在测试过程中使用训练好的模型对整个序列进行预测,并将预测结果与原始数据进行比较。需要注意的是,在实际使用过程中,我们需要根据具体的应用场景选择合适的网络结构、损失函数、优化器等,并对数据进行适当的预处理和后处理。
2024-11-14 10:38:31 2KB pytorch pytorch lstm
1
matlab实现基于贝叶斯优化的LSTM预测
2024-11-13 21:59:44 19KB matlab lstm
1
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。 这段程序主要是一个基于CNN-LSTM-Attention神经网络的预测模型。下面我将逐步解释程序的功能和运行过程。 1. 导入所需的库: - matplotlib.pyplot:用于绘图 - pandas.DataFrame和pandas.concat:用于数据处理 - sklearn.preprocessing.MinMaxScaler:用于数据归一化 - sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能 - keras:用于构建神经网络模型 - numpy:用于数值计算 - math.sqrt:用于计算平方根 - attention:自定义的注意力机制模块 2. 定义一个函数mae_value(y_true, y_pred)用于计
2024-10-31 10:13:17 288KB 网络 网络 lstm
1
内容概要:详细演示了使用 Python 中的 LSTM 和 XGBoost 结合来创建股票价格预测模型的方法。该示例介绍了从数据提取到模型优化全过程的操作,并最终通过图形比较预测值和真实值,展示模型的有效性,有助于提高金融投资决策水平和风险管理能力。本项目的亮点之一就是它融合 LSTM 捕获时间关系的强大能力和 XGBoost 在复杂特征之间的建模优势。 适用人群:有Python编程经验的人士以及金融市场投资者和技术分析师。 使用场景及目标:应用于金融市场的投资策略规划,特别是针对需要长期监控、短期交易决策的股票,用于辅助进行市场走势判断和交易决策支持。 额外信息:此外还包括对未来工作的改进建议:加入更多金融技术指标的考量以及使用更高级机器学习模型的可能性。
2024-10-23 13:27:07 41KB Python LSTM XGBoost 股票价格预测
1
CNN-LSTM-Attention分类,基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)分类预测 MATLAB语言(要求2020版本以上) 中文注释清楚 非常适合科研小白,替数据集就可以直接使用 多特征输入单输出的二分类及多分类模型。 预测结果图像:迭代优化图,混淆矩阵图等图如下所示
2024-10-10 09:56:10 191KB
1
<项目介绍> 基于Python+Django+PSO-LSTM电力负荷预测系统源码+文档说明 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
2024-09-23 20:12:24 4.06MB python django 人工智能 lstm
1
基于CNN-LSTM模型的网络入侵检测方法,使用的是UNSW-NB15数据集,代码包含实验预处理,混淆矩阵输出,使用分成K折交叉验证,实验采用多分类,取得良好的效果。 Loss: 0.05813377723097801 Accuracy: 0.9769517183303833 Precision: 0.9889464676380157 Recall: 0.9685648381710052
2024-09-20 20:56:16 397KB lstm jupyter
1