卷积神经网络的字体分类 该项目的想法是创建一个神经网络,以检测一种字体中的多种样式(多标签分类问题)。 我要检测的样式是“海报”,“漫画”,“复古”,“ Techno”,“未来派”等。 问题 如果您是设计师并且拥有很多字体,那么就很难记住计算机上本地所有的字体。 有时,最好根据其样式(如“海报”,“复古”等)来过滤字体。但是字体文件没有这种样式元数据,因此您不能这样做。 平面设计师受苦。 项目结构 . ├── data # Scraped and generated data which is used to train models
2022-10-24 14:23:09 2.51MB nodejs font scraper neural-network
1
得来的完整原版pdf,共361页,不是图片版,有索引,自然语言入门神书,豆瓣评分9.1
2022-10-24 01:27:17 6.46MB deeplearning NLP 深度学习
1
两个没有ML知识的家伙开始创建一个神经网络来进行Twitter情绪分析。 :D 如何使用: 将情感分析数据集提取到“ full_data”(或任何您想要的数据) 运行“ python3 split_data.py full_data 1000”,将训练数据分成随机的1000条不良tweets和1000条良好tweets。 运行'python3 ffn_twitter.py'。 当前,您必须对文件名进行硬编码。
2022-10-20 10:53:14 56.11MB twitter tweets sentiment-analysis neural-network
1
神经网络 乳腺癌数据集的神经网络,可产生概率并对新患者进行分类。 训练数据 该模型是使用699例乳腺癌患者的数据集构建的。 数据集经过归一化和清洗,最终使500名患者接受了培训和测试的最终数据集。 共有500例患者,其中262例(52.4%)患有良性肿瘤,238例(47.6%)患有恶性肿瘤。 为了进行训练,使用了80%的数据,其中40%是良性肿瘤,40%是恶性肿瘤,其余20%用于测试。 在这20%中,12.4%来自良性肿瘤,而7.6%来自恶性肿瘤。 怎么跑 克隆存储库 启动你的服务器 现在,您可以访问神经网络预测的结果并查看模型训练的性能图。 内容
2022-10-17 19:59:16 8KB neural-network breast-cancer JavaScript
1
Opencv使用Fast Neural Style实现图像风格迁移,Opencv代码实现,Python语言实现
1
Neural Networks for Time Series Forecasting with R》,2017年新出书籍,深度学习用于时间序列
2022-10-16 10:18:38 1.52MB R Neural Networks
1
OpenNMT-py:开源神经机器翻译 OpenNMT-py是项目的版本, 项目是一个开源(MIT)神经机器翻译框架。 它被设计为易于研究的,可以尝试翻译,摘要,形态和许多其他领域的新思想。 一些公司已经证明该代码可以投入生产。 我们喜欢捐款! 请查看带有标签的问题。 提出问题之前,请确保您已阅读要求和文档示例。 除非有错误,否则请使用或提出问题。 公告-OpenNMT-py 2.0 我们很高兴宣布即将发布OpenNMT-py v2.0。 此版本背后的主要思想是-几乎完整地改造了数据加载管道。 引入了新的“动态”范式,允许对数据进行动态转换。 这具有一些优点,其中包括: 删除或
1
《TF-GNN:Graph Neural Networks》附录《A.2.2 Creating GraphTensors》例程
2022-10-09 20:05:19 2KB TFGNN
1
吴恩达机器学习 Neural Networks for Binary Classification Jupyter note版本编程作业 机器学习与数据挖掘
2022-10-09 18:07:03 13.45MB 机器学习 数据挖掘 神经网络
1
Neural Networks for Handwritten Digit Recogn 吴恩达机器学习 jupyter note 版本编程作业 机器学习与数据挖掘 用神经网络识别手写数字0-9
2022-10-09 18:07:02 6.86MB 机器学习 神经网络 数据挖掘
1