matlab 交叉验证代码 Preface 下面是我对这篇 Reading Text in the Wild with Convolutional Neural Networks 文章, 对于前半部分:文字定位检测部分的复现大致流程。 用的数据集是 ICDAR 2011: ,不少人都说 ICDAR 2011 数据集下载不了,我在这里上传一份我自己备份的: 需要指出的是,一方面因为做个实验与示例,且数据集小,做的结果比较粗糙。希望大家包含一下,因为不少同学跟我私信要代码,我在这里贴出来。希望得到大神的建议,帮助完善。 整理后的过程文件都在 reading text in the wild 中。 edge_boxes_with_python 文件夹,存放 Edge Boxes 、Random Forest 的代码,还有一些中间保存的变量结果。 Bounding_Box_Reg 是存放最后回归的文件夹。训练数据的生成、网络的定义都在里面。 Output 文件夹存放中间输出的图像,即将 Bounding Boxes 画在原图上的结果。 **注意:**下面有些数学公式,Github 上不支持,您
2022-11-22 16:46:16 229.69MB 系统开源
1
Neural Network Programming with Java.rar,神经网络JAVA实现英文版及源码,Neural Network JAVA
2022-11-18 15:47:00 5.15MB Neural Network J JAVA
1
图像重复数据删除器(imagededup) imagededup是一个python软件包,它简化了在图像集合中查找精确且几乎重复的任务。 该软件包提供了利用散列算法的功能,这些算法特别擅长查找精确的重复项,而卷积神经网络也擅长查找近似的重复项。 还提供了评估框架来判断给定数据集的重复数据删除质量。 以下详细说明了软件包提供的功能: 使用以下算法之一在目录中查找重复项: (CNN) (PHash) (DHash) 波哈希(WHash) (AHash) 使用上述算法之一生成图像编码。 给定基本事实映射的框架来评估重复数据删除的有效性。 绘制找到给定图像文件的重复项。 该软
2022-11-15 19:44:30 18.68MB hashing computer-vision neural-network tensorflow
1
RNN和Temporal-ConvNet进行活动识别 ,(等额缴纳) 论文代码: (在杂志上接受,2019年) 项目: 抽象的 在这项工作中,我们使用ResNet-101演示了一个强大的基线两流ConvNet。 我们使用此基线来彻底检查RNN和Temporal-ConvNets的使用,以提取时空信息。 基于我们的实验结果,然后我们提出并研究了两个不同的网络,以进一步整合时空信息:1)时域RNN和2)初始样式的Temporal-ConvNet。 我们的分析确定了每种方法的特定局限性,这些局限性可能构成未来工作的基础。 我们在UCF101和HMDB51数据集上的实验结果分别达到了94.1%和69.0%的最新性能,而无需大量的时间增强。 我们如何解决活动识别问题? 演示版 GIF展示了我们的TS-LSTM和“时间-开始”方法的前3个预测结果。 顶部的文本是基本事实,三个文本是每种方法的预
1
Deep convolutional neural networks as an estimator of porosity i
2022-11-12 11:30:34 329KB 深度学习 卷积神经网络 岩石图像
1
Deep convolutional neural networks as a geological image classif
2022-11-12 09:31:41 4.86MB 深度学习 卷积神经网络 岩石图像
1
模糊和清晰的图像分类 分类模糊和清晰的图像 介绍 在日常生活中,由于聚焦不佳,帧中物体的运动或在捕获图像时的握手运动,我们会遇到从相机单击的不良图像。 Blur is typically the thing which **suppress the high-frequency** of our Images, therefore can be detected by using various low-pass filter eg. Laplacian Filter. 作为一个聪明的人(我自己是CS人士),我们不想手动过滤掉清晰和模糊的图像,因此我们需要一些聪明的方法来删除不必要的图像。 LoG筛选器 我还应用了高斯( )滤波器的拉普拉斯算子来检测模糊图像,但是很难找到区分图像所需的阈值的确切值。 尽管结果并不令人着迷。 使用方差 一些讨论 LoG参考: 在Python中实现
1
神经场景流场 PyTorch实施的论文“用于动态场景的时空视图合成的神经场景流场”,CVPR 2021 所发布的实现与当前的ArXiv略有不同。 我们将在三月底之前将ArXiv更新为CVPR摄像机就绪版本,以完全匹配已发布代码的发现。 相依性 该代码已使用Python3,Pytorch> = 1.6和CUDA> = 10.2进行了测试,相关性包括 configargparse matplotlib OpenCV scikit图像 科学的 杯状的 图像。 tqdm 视频预处理 从下载nerf_data.zip,该示例输入视频具有SfM摄像机的姿势和从估计的内在函数(请注意,您需要使用COLMAP“ colmap image_undistorter”命令来使输入图像失真,以获取“密集”文件夹,如示例中所示,该文件文件夹应包含“图片”和“稀疏”文件夹)。 从下载单视图深度预测模型“ m
2022-10-30 00:04:06 35.23MB Python
1
三层简单的神经网络的前向传播算法,适合初学者学习借鉴
2022-10-27 17:12:07 3KB forward propagat  neural network
1
语义分割的有效解决方案:具有无可分离卷积的ShuffleNet V2 我们提出了一种计算有效的语义分割方法,同时实现了对Cityscapes挑战的70.33%的高均值交集(mIOU)。 建议的网络能够在移动设备上实时运行。 纸: 如果您发现该代码对您的研究有用,请考虑引用我们: @InProceedings{turkmen2019efficient, author = {Sercan T{ \" u}rkmen and Janne Heikkil{ \" a}}, title = {An Efficient Solution for Semantic Segmentation: {ShuffleNet} V2 with Atrous Separable Convolutions}, booktitle = {Image Analysis}, year
1