乳腺癌检测应用 使用机器学习XGBoost分类器的乳腺癌检测应用程序
2023-11-24 14:16:10 1.94MB HTML
1
UCI Breast Cancer 原始数据集,包含了三组乳腺癌细胞病理图像数据数据。
2023-03-29 10:15:21 85KB UCI 分类 疾病诊断
1
乳腺癌预测应用程序使用 Flask-Python 在乳腺癌威斯康星州数据集上建立机器学习模型来预测癌症是良性还是恶性。 定义问题陈述 我们的主要目标是使用 Flask API 构建一个应用程序并部署在 Heroku 上以对乳腺癌是良性还是恶性进行分类。 使用此链接访问完整项目的文件夹 此文件夹包含连接到这 5 部分文章的 Python 代码: | | | | 通过这段代码,我们将学习: 如何在 Heroku 上使用 Flask API 部署模型? 数据来自威斯康星癌症数据集。 该数据由威斯康星大学麦迪逊分校的医院和William H. Wolberg博士收集。 阅读更多 与我联系
2023-03-05 10:43:23 66KB HTML
1
乳腺癌预测 在乳腺癌数据集上采用了四种机器学习模型来确定最佳模型。 逻辑回归 决策树分类器 随机森林分类器 支持向量机
2022-11-23 12:17:39 132KB JupyterNotebook
1
神经网络 乳腺癌数据集的神经网络,可产生概率并对新患者进行分类。 训练数据 该模型是使用699例乳腺癌患者的数据集构建的。 数据集经过归一化和清洗,最终使500名患者接受了培训和测试的最终数据集。 共有500例患者,其中262例(52.4%)患有良性肿瘤,238例(47.6%)患有恶性肿瘤。 为了进行训练,使用了80%的数据,其中40%是良性肿瘤,40%是恶性肿瘤,其余20%用于测试。 在这20%中,12.4%来自良性肿瘤,而7.6%来自恶性肿瘤。 怎么跑 克隆存储库 启动你的服务器 现在,您可以访问神经网络预测的结果并查看模型训练的性能图。 内容
2022-10-17 19:59:16 8KB neural-network breast-cancer JavaScript
1
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) Breast Cancer Wisconsin (Diagnostic) Data Set
2022-10-11 16:34:18 48KB 数据集
1
社会上的主要疾病是全世界女性的乳腺癌,其中27%的女性患有癌症。 机器学习分类器适合医师以低成本和时间进行完美诊断。 分类器的比较性能分析需要获得准确的诊断,因为医学数据由本质上嘈杂的高维数据组成。 在这项研究中,将不同的分类器机器学习技术应用于乳腺癌数据集。 印度的癌症发生率在30年代初有所增加,但在50-64岁时达到最高点。 根据NICPR报告,在28名妇女中,有一名妇女患了乳腺癌。 但是这种比例将改变城市人口,其中22名妇女中有1名妇女受到影响。 在农村,该比例增加到每60名妇女中增加1名? 通过早期诊断和治疗可以提高患者的治愈率,这可以延长他们的寿命。 在这里,我们已经建立了一个模型来识别癌细胞是良性还是恶性的。 我们使用了机器学习技术分类器。 在这里,我们必须确定一种在不同的手术条件和数据集下预测疾病的合适技术。 结果分析表明,SVM被认为是识别不同性能矩阵(例如灵敏度,准确性,误差和特异性)的合适选择。
2022-09-25 09:22:28 1.03MB Machine learning Breast cancer
1
癌症是导致人类死亡的众所周知的疾病,乳腺癌(BC)是女性诊断出的癌症之一。 一生中大约有八名女性被诊断出患有BC。 如果尽早诊断出BC,可以很容易地进行治疗。 这项研究的方法是通过不同的机器学习(ML)技术来识别患有BC或不患有BC的患者。 在这项研究中,威斯康星州诊断性乳腺癌(WDBC)数据集将通过支持向量机(SVM),k最近邻(k-NN),朴素贝叶斯(NB),决策树(DT)和逻辑回归(LR)进行分类)。 分类之前有一个预处理阶段,其中五个不同的分类器应用了5倍交叉验证方法。 分类性能是通过使用混淆量度通过性能测量参数(即准确性,敏感性和特异性)来测量的。 在这项研究中,SVM在归一化过程后发现的最佳性能为99.12%的精度。
2022-05-21 16:38:44 544KB Breast Cancer WDBC SVM
1