STM32F103VET6+TC6014四轴运动控制卡核心板PROTEL99SE设计硬件原理图+PCB文件,硬件2层板设计,大小为85mmx74mm,PROTEL设计,包括完整的原理图和PCB文件,可以PROTEL或AD打开,可以做为你的设计参考。
飞控配件: 1、STC8A8K16S4A12 LQFP44做的飞控1块。 2、MPU-6050三轴陀螺仪、三轴加速度传感器模块1块。MC6B遥控、接收机1套。 3、F450玻纤四轴机架1套。 4、2212无刷电机4个(配香蕉插)。20A电调4个。T插插头1个。 5、9450正反桨2对(实际买多些,因为新手会有损耗)。3S锂电池4200mAH 1块(用户可以购买多块爽飞)。B6平衡充(带12V 5A电源)1套。 6、12号硅胶线红、黑色给20cm。魔术带(捆绑电池的)1条。3M双面胶(3*7cm,粘电调、飞控用)2片。 7、扎丝或扎带若干(扎丝,因为可以方便的拧下来)。 本飞控仅仅是姿态飞行控制,没有GPS、电子罗盘、气压高度计、超声波测距、光流传感器等等,不能实现定点悬停,但是飞行感觉非常好,稳定,特别是暴力飞行的刺激,是很多玩家所喜欢的。用户可以自行增加这些传感器,编写相关的程序,以获得更好的飞行性能。 本飞控通过调整PID参数可以适应从250mm轴距到750mm 轴距的,都实际装机验证过,效果很好。 本例实用F450的四轴机架,大约40元,安装简单,入门快,让玩家可以快速的装配成功,如动手能力强可以自己买配件做机架,铝合金或碳纤维均可。我喜欢用铝合金方管,好加工,强度好,还很轻。 配套使用MC6B的遥控、接收套件,左手油门(俗称“美国手”),大约130元,是我能找到的最便宜的遥控器了,不差钱的玩家可以使用更昂贵的遥控器套件。四轴实物照片如下图所示。 文件包含:程序+原理图+技术文档
2022-01-10 09:11:30 795KB 四轴飞控 STC51
1.robot教程 2.操作篇 3.言语篇 4.机械手语言篇 5.通讯篇 6.用户参数篇 7.接口篇 8.学校教程导入篇
2022-01-09 19:11:10 22.38MB 东芝四轴机器人手册
1
四轴数控磨刀机磨刀机
1
完整的四轴飞控原理图,stm32作为主控芯片,另外还包括气压计、指南针、MPU6050
2022-01-04 12:41:40 458KB 四轴
1
15年参加全国大学生电子设计竞赛,C题目是“多旋翼自主飞行器”,设计要求: (1)多旋翼自主飞行器(下简称飞行器)摆放在图1所示的A区,开启航拍,一键式启动,飞行器起飞;飞向B区,在B区中心降落并停机;航拍数据记录于飞行器自带的存储卡中,飞行结束后可通过PC回放。飞行高度不低于30CM;飞行时间不大于30s。 (2)飞行器摆放在图1所示的A区,一键式启动,飞行器起飞;沿矩形CDEF逆时针飞行一圈,在A区中心降落并停机;飞行高度不低于30cm;飞行时间不大于45s。 (3)制作一个简易电子示高装置,产生示高线h1、h2(如激光等),h1、h2位于同一垂直平面,飞行器触碰h1、h2线时该装置可产生声光报警。示高线h1、h2的高度在测试现场可以调整。范围为30cm~120cm。 图1 飞行区域俯视图 (图中长度单位:cm ) 参加电赛时弄了一套STM32 WIFI四轴飞行器资料,大赛期间研究了一下,收获颇多,先分享出来,供大家一起参考 附件包含以下资料
1
四轴飞行器姿态控制系统设计 制作方法和原理
2021-12-30 11:04:03 1.15MB 四轴飞行器
1
四轴飞行器作为低空低成本的遥感平台,在各个领域应用广泛。与其他类型的飞行器相比,四轴飞行器硬件结构简单紧凑,但是软件算法复杂,从数据融合到姿态解算,以及最后稳定和快速的控制算法,都无疑使得四轴飞行器更加有魅力。为了实现对四轴的控制,本作品使用了ST公司推出的STM32作为处理器, MPU6050作为姿态传感器,软塑料机架,空心杯电机,两对正反桨,锂电池,以及四轴遥控器。最后,经过相关调试工作,设计出能够遥控稳定飞行、具有一定的快速性和鲁棒性的小型四轴飞行器。
2021-12-30 09:46:30 8.43MB 电路方案
1
项目简介: 本项目是基于IDT无线充电15W模块充电模块与四轴F450无人机设计的。通过在无人机机架上搭载无线充电模块接受端,当检测到电压较低时触发充电请求,控制无人机到达充电发射端附近时,由超声波模块进行检测并降落完成充电。 硬件说明: 硬件设计上包括主控模块,电调,无线遥控接收器,超声波模块和无线接收转换器等。 硬件框图如下图1所示: 主控模块可由APM2.8模块或自助研发的STM32飞控,本项目主要使用自研STM32飞控,主控芯片为STM32F207,主要对无人机进行数据分析及控制,同时对机体电池电量进行采集及判断。原理图如下图2所示。 超声波模块是采用外购的KS103模块,如图3所示,测距最大距离8米,盲区为最小1cm之内。测量精度平均3mm,最高达1mm.而且相当灵敏。具有目前其他同类超声波模块产品所无法达到的性能优势和质量保障。测量距离,温度,光强,三合一功能。适用于机器人准确测距避障,扑火机器人,趋光机器人,四轴飞控定高,工业测距,身高体重仪测量身高,以及安防等领域。本作品是利用模块定高功能的同时也给无线充电作为引导充电指示,对于飞控上的接口如图4所示。 供电系统分为12V转5V,12V转3.3V,皆采用开关电源进行稳压给各项子功能电路使用,如图5所示 在机体上,需要对无线充电电池电压进行检测并判断,所以板子上了一个检测和判断电路,如图6所示 软件说明: 软件使用了MDK4.74平台对STM32F207进行开发和代码编译下载,手机使用自开发APP与蓝牙模块进行通信,相关文档资料和程序代码上传在附件。 在实际调试过程中我们发现不同的姿态解算,数据融合方法对飞行器的稳定性的影响很大,我们使用了Mahony四元数解算。四轴姿态的表示可以用欧拉角,也可以用四元数。姿态检测算法作用就是将加速度计、陀螺仪,磁力计的测量值解算成姿态,进而作为系统的反馈量。在获取传感器值之前需要对数据进行滤波,滤波算法主要是将获取到的陀螺仪和加速度计的数据进行去噪声及融合,得出正确的角度数据(欧拉角或四元数),主要采用互补滤波或者卡尔曼滤波。 无线充电是通过主控判断电池电量低于设定值之后提醒飞控手后飞到地面充电发射端附近,通过检测地面超声波发射器的位置进行左右对准后下降充电。 演示效果: 无人机整体实物图 无人机运行工作图 无线充电模块安装图 附件内容截图: 【转载自电子发烧友】
2021-12-28 11:55:38 6.76MB 无线充电 四轴 无人机 四轴无人机
1
ADLINK PCI-8134 四轴步进和伺服运动控制卡pdf,ADLINK PCI-8134 四轴步进和伺服运动控制卡
2021-12-27 12:19:29 4.9MB 综合资料
1