改进的EM-Xception人脸情绪识别研究
2022-11-15 21:30:55 1.32MB Xception 情绪识别 DeepLeaning
1
keras的resnet,inceptionV3,xception模型
2021-11-16 17:27:41 236.36MB keras
1
官方h5权重文件,xception_weights_tf_dim_ordering_tf_kernels Linux下是放在“~/.keras/models/”中 windows用户直接将文件放置在:C:\Users\用户名\.keras\models 下即可。官方GitHub下载速度慢,给需要的朋友们。
2021-11-10 15:30:56 87.63MB Keras 预训练 模型 全值文件
1
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import sklearn import sys import tensorflow as tf import time from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Model from tensorflow.keras.lay
2021-11-05 18:27:58 31KB AS axis c
1
Xception 是一个预训练模型,已经在 ImageNet 数据库的一个子集上进行了训练。 该模型接受了超过一百万张图像的训练,可以将图像分类为1000个对象类别(例如键盘,鼠标,铅笔和许多动物)。 从操作系统或在MATLAB中打开xception.mlpkginstall文件将启动具有该发行版的安装过程。 此 mlpkginstall 文件适用于 R2019a 及更高版本。 用法示例: % 访问训练好的模型净 = xception(); % 查看架构细节网络层 % 读取图像进行分类I = imread('peppers.png'); % 调整图片大小sz = net.Layers(1).InputSize I = I(1:sz(1),1:sz(2),1:sz(3)); % 使用 Xception 对图像进行分类标签 = 分类(净,我) % 显示图像和分类结果数字显示(
2021-11-04 16:36:02 6KB matlab
1
使用Xception网络进行车辆分类,内容包含:训练好的一个模型,模型代码,训练代码,评估代码
2021-11-01 18:14:54 221.92MB 车辆分类 图像分类 深度学习 神经网络
1
主要介绍了使用keras实现densenet和Xception的模型融合,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-10-12 17:42:30 1.06MB keras densenet Xception 模型融合
1
我正在参加天池上的一个竞赛,刚开始用的是DenseNet121但是效果没有达到预期,因此开始尝试使用模型融合,将Desenet和Xception融合起来共同提取特征。 代码如下: def Multimodel(cnn_weights_path=None,all_weights_path=None,class_num=5,cnn_no_vary=False): ''' 获取densent121,xinception并联的网络 此处的cnn_weights_path是个列表是densenet和xception的卷积部分的权值 ''' input_layer=Input(shape=(2
2021-10-12 14:40:04 49KB AS c ce
1
pytorch-deeplab-xception 于2018/12/06更新。 提供在VOC和SBD数据集上训练的模型。 于2018/11/24更新。 发布最新版本的代码,该代码可以解决一些以前的问题,并增加对新主干和多GPU培训的支持。 有关以前的代码,请参见上previous分支 去做 支持不同的骨干网 支持VOC,SBD,城市景观和COCO数据集 多GPU训练 骨干 火车/评估系统 价值 预训练模型 ResNet 16/16 78.43% 移动网 16/16 70.81% DRN 16/16 78.87% 介绍 这是的PyTorch(0.4.1)实现。 它可以使用Modified Aligned Xception和ResNet作为主干。 目前,我们使用Pascal VOC 2012,SBD和Cityscapes数据集训练DeepLab V3 Plus。 安装 该代
2021-09-01 15:38:46 559KB pytorch resnet xception mobilenetv2
1
皮托奇·西法尔100 pytorch在cifar100上练习 要求 这是我的实验资料 python3.6 pytorch1.6.0 + cu101 张量板2.2.2(可选) 用法 1.输入目录 $ cd pytorch-cifar100 2.数据集 我将使用来自torchvision的cifar100数据集,因为它更方便,但我还将示例代码保留了用于在数据集文件夹中编写您自己的数据集模块的示例,以作为人们不知道如何编写它的示例。 3.运行tensorbard(可选) 安装张量板 $ pip install tensorboard $ mkdir runs Run tensorboard
1