pytorch-cifar100:在cifar100上实践(ResNet,DenseNet,VGG,GoogleNet,InceptionV3,InceptionV4,Inception-ResNetv2,Xception,Resnet In Resnet,ResNext,ShuffleNet,ShuffleNetv2,MobileNet,MobileNetv2,SqueezeNet,NasNet,Residual Attention Network,SE WideResNet)-源码

上传者: 42125192 | 上传时间: 2021-08-25 21:25:56 | 文件大小: 45KB | 文件类型: ZIP
皮托奇·西法尔100 pytorch在cifar100上练习 要求 这是我的实验资料 python3.6 pytorch1.6.0 + cu101 张量板2.2.2(可选) 用法 1.输入目录 $ cd pytorch-cifar100 2.数据集 我将使用来自torchvision的cifar100数据集,因为它更方便,但我还将示例代码保留了用于在数据集文件夹中编写您自己的数据集模块的示例,以作为人们不知道如何编写它的示例。 3.运行tensorbard(可选) 安装张量板 $ pip install tensorboard $ mkdir runs Run tensorboard

文件下载

资源详情

[{"title":"( 29 个子文件 45KB ) pytorch-cifar100:在cifar100上实践(ResNet,DenseNet,VGG,GoogleNet,InceptionV3,InceptionV4,Inception-ResNetv2,Xception,Resnet In Resnet,ResNext,ShuffleNet,ShuffleNetv2,MobileNet,MobileNetv2,SqueezeNet,NasNet,Residual Attention Network,SE WideResNet)-源码","children":[{"title":"pytorch-cifar100-master","children":[{"title":"models","children":[{"title":"nasnet.py <span style='color:#111;'> 9.37KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 5.35KB </span>","children":null,"spread":false},{"title":"densenet.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"preactresnet.py <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"stochasticdepth.py <span style='color:#111;'> 7.34KB </span>","children":null,"spread":false},{"title":"googlenet.py <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"inceptionv3.py <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false},{"title":"resnext.py <span style='color:#111;'> 4.10KB </span>","children":null,"spread":false},{"title":"inceptionv4.py <span style='color:#111;'> 17.68KB </span>","children":null,"spread":false},{"title":"senet.py <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"rir.py <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"attention.py <span style='color:#111;'> 11.48KB </span>","children":null,"spread":false},{"title":"xception.py <span style='color:#111;'> 5.97KB </span>","children":null,"spread":false},{"title":"mobilenetv2.py <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"squeezenet.py <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"shufflenetv2.py <span style='color:#111;'> 4.68KB </span>","children":null,"spread":false},{"title":"vgg.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"wideresidual.py <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"mobilenet.py <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"shufflenet.py <span style='color:#111;'> 7.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"conf","children":[{"title":"global_settings.py <span style='color:#111;'> 951B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 297B </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 10.45KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"lr_finder.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 7.94KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 35B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.76KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明