作者等人利用观察到的阶段性特征冗余,设计G-Ghost模块并应用于GPU等设备,实现了一个在GPU上具有SOTA性能的轻量级CNN。G-Ghost中g_ghost_regnetx_160模型在ImageNet上取的了79.9%的成绩。 我这篇文章主要讲解如何使用G-Ghost完成图像分类任务,接下来我们一起完成项目的实战。经过测试,G-Ghost在植物幼苗数据集上实现了97+%的准确率。 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/128086517
2022-11-29 16:28:01 952.82MB GhostNet
Pytorch实现RegNet模型在CIFAR10数据集上的测试。ipynb文件,包含了完整的训练、测试输出数据。
2021-12-28 12:06:11 36KB python cifar10 pytorch
1
PyTorch图像模型 赞助商 非常感谢我的的支持! 除了以上链接的赞助商之外,我还从以下位置获得了硬件和/或云资源: 英伟达( ) TFRC( ) 我很幸运能够自己投入大量时间和金钱来支持这个项目和其他开源项目。 但是,随着项目范围的扩大,需要外部支持来继续当前的硬件,基础设施和电力成本轨迹。 什么是新的 2021年5月5日 从添加MLP-Mixer模型和端口预训练权重 从添加CaiT模型和预训练权重 从添加ResNet-RS模型和权重。 添加CoaT模型和权重。 感谢 为TResNet,MobileNet-V3,ViT模型添加新的ImageNet-21k权重和微调的权重。 谢谢 添加GhostNet模型和权重。 谢 更新ByoaNet注意模型 改进SA模块的初始化 将基于实验的独立Swin attn模块和swinnet 实验的一致“ 26t”模型定义。 添加改进的
2021-11-16 15:52:37 14.12MB pytorch resnet pretrained-models mixnet
1
PyTorch图像模型 赞助商 非常感谢我的的支持! 除了以上链接的赞助商之外,我还从以下位置获得了硬件和/或云资源: 英伟达( ) TFRC( ) 我很幸运能够自己投入大量时间和金钱来支持这个项目和其他开源项目。 但是,随着项目范围的扩大,需要外部支持来继续当前的硬件,基础设施和电力成本轨迹。 什么是新的 2021年5月5日 从添加MLP-Mixer模型和端口预训练权重 从添加CaiT模型和预训练权重 从添加ResNet-RS模型和权重。 添加CoaT模型和权重。 感谢 为TResNet,MobileNet-V3,ViT模型添加新的ImageNet-21k权重和微调的权重。 谢谢 添加GhostNet模型和权重。 谢 更新ByoaNet注意模型 改进SA模块的初始化 将基于实验的独立Swin attn模块和swinnet 实验的一致“ 26t”模型定义。 添加改进的E
2021-11-14 12:09:56 14.12MB pytorch resnet pretrained-models mixnet
1
RegNet 介绍 在这项工作中,我们提出了一种通过学习方法来解决非刚性图像配准的方法,而不是通过对预定义的相异性度量进行迭代优化来解决。 我们设计了卷积神经网络(CNN)架构,与所有其他工作相反,该架构直接从一对输入图像中估计位移矢量场(DVF)。 提议的RegNet使用大量的人工生成的DVF进行了训练,没有明确定义相异性度量标准,并且以多种比例集成了图像内容,从而为网络配备了上下文信息。 在测试时,与当前的迭代方法相反,非刚性配准是一次完成的。 引文 [1] , , , , , , 和 ,2019年。。 arXiv预印本arXiv:1908.10235。 [2] , , , , IvanaIšgum和Marius Staring ,2017年9月。 使用多尺度3D卷积神经网络进行非刚性图像配准。 在医学图像计算和计算机辅助干预国际会议上(第232-239页)。 湛
1
介绍 目前支持tensorflow在 ResNeSt 2d&3d RegNet DETR (修改后的分类) GENet (2020 GPU高效网络) 仅限于模型,没有可下载的pertrain模型(这意味着没有足够的空闲时间和资源)。 易于阅读和修改。 欢迎使用它,提出问题,进行测试,也许会发现一些错误。 ResNeSt基于 。 更新 2020-7-30 :添加并基于。 纸上展示了在GPU环境下获得的良好性能,这与RegNet非常相似。 型号名称GENet_light , GENet_normal , GENet_large 。 2020-6-14 :添加Resnest3D ,这要归功于@vitanuan,型号名称为resnest50_3d , resnest101_3d , resnest200_3d ,输入形状为4d,例如input_shape = [50,224,224,3
2021-09-09 19:43:26 1.18MB Python
1
介绍 一维(1D)信号/时间序列数据上的多个SOTA骨干深度神经网络(例如ResNet [1],ResNeXt [2],RegNet [3])的PyTorch实现。 如果您在工作中使用此代码,请引用我们的论文 @inproceedings{hong2020holmes, title={HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in Intensive Care Units}, author={Hong, Shenda and Xu, Yanbo and Khare, Alind and Priambada, Satria and Maher, Kevin and Aljiffry, Alaa and Sun, Jimeng and Tumanov, Alexey}, bookt
1
REGNet_for_3D_Grasping-main.zip
2021-03-27 20:34:06 9.39MB regnet 机器学习
1