吴恩达Machine Learning课程对应Jupyter代码(第一课 P1-41)

上传者: 46632427 | 上传时间: 2025-07-14 14:51:48 | 文件大小: 83.12MB | 文件类型: RAR
吴恩达Machine Learning课程对应Jupyter代码(第一课 P1-41) 压缩包包含吴恩达课程的第一部分 监督学习、回归与分析 的课程ppt和一系列基于Jupyter Notebook的Python代码,主要用于教授机器学习的基础知识。 本资源适用于对机器学习和Python编程感兴趣的初学者。 通过这个压缩包,可以按照吴恩达的教学步骤,亲手实践每一个例子,从而加深对机器学习的理解。每一章的Notebook都可能包含理论解释、代码示例和练习,帮助你巩固所学知识。 可结合作者已整理的笔记展开: https://blog.csdn.net/weixin_46632427/article/details/144102661?spm=1001.2014.3001.5502 https://blog.csdn.net/weixin_46632427/article/details/145431040?spm=1001.2014.3001.5502

文件下载

资源详情

[{"title":"( 371 个子文件 83.12MB ) 吴恩达Machine Learning课程对应Jupyter代码(第一课 P1-41)","children":[{"title":"C1_W2_Lab04_dot_notrans.gif <span style='color:#111;'> 1.61MB </span>","children":null,"spread":false},{"title":"C1_W2_Lab03_Feature_Scaling_and_Learning_Rate_Soln.ipynb <span style='color:#111;'> 855.27KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_LogisticLoss_Soln.ipynb <span style='color:#111;'> 315.39KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb <span style='color:#111;'> 294.74KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_One_Vs_All_Soln.ipynb <span style='color:#111;'> 272.75KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_One_Vs_All_user.ipynb <span style='color:#111;'> 272.37KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 165.95KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Overfitting_Soln.ipynb <span style='color:#111;'> 152.81KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Overfitting_user.ipynb <span style='color:#111;'> 152.81KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Overfitting_Soln.ipynb <span style='color:#111;'> 152.16KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Overfitting_user.ipynb <span style='color:#111;'> 152.16KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 118.07KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularization_Soln.ipynb <span style='color:#111;'> 114.39KB </span>","children":null,"spread":false},{"title":"C1_W3_Logistic_Regression.ipynb <span style='color:#111;'> 67.92KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Overfitting_Soln.ipynb <span style='color:#111;'> 63.15KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab05_Sklearn_GD_Soln.ipynb <span style='color:#111;'> 51.63KB </span>","children":null,"spread":false},{"title":"C1_W2_Linear_Regression.ipynb <span style='color:#111;'> 51.17KB </span>","children":null,"spread":false},{"title":"C1_W2_Linear_Regression-checkpoint.ipynb <span style='color:#111;'> 51.17KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Classification_Soln.ipynb <span style='color:#111;'> 47.80KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 44.85KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Overfitting_Soln.ipynb <span style='color:#111;'> 42.51KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function_Soln.ipynb <span style='color:#111;'> 37.02KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function_user.ipynb <span style='color:#111;'> 36.51KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function_Soln.ipynb <span style='color:#111;'> 35.76KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function_user.ipynb <span style='color:#111;'> 35.30KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 31.30KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary_user.ipynb <span style='color:#111;'> 31.19KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_One_Vs_All_Soln.ipynb <span style='color:#111;'> 31.17KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_One_Vs_All_user.ipynb <span style='color:#111;'> 30.32KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab02_Multiple_Variable_Soln.ipynb <span style='color:#111;'> 29.08KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab02_Multiple_Variable_Soln-checkpoint.ipynb <span style='color:#111;'> 29.08KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab03_Feature_Scaling_and_Learning_Rate_Soln.ipynb <span style='color:#111;'> 25.94KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab01_Python_Numpy_Vectorization_Soln.ipynb <span style='color:#111;'> 25.65KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab01_Python_Numpy_Vectorization_Soln.ipynb <span style='color:#111;'> 25.63KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab02_Multiple_Variable_Soln.ipynb <span style='color:#111;'> 24.49KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab05_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 21.44KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab05_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 20.64KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 20.30KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Sigmoid_function_user.ipynb <span style='color:#111;'> 20.21KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab05_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 19.99KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 19.72KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Sigmoid_function_user.ipynb <span style='color:#111;'> 19.62KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularization_Soln.ipynb <span style='color:#111;'> 18.46KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 16.78KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 16.56KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent_user.ipynb <span style='color:#111;'> 16.41KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 15.26KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 14.54KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab03_Model_Representation_Soln.ipynb <span style='color:#111;'> 14.34KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab03_Model_Representation_Soln-checkpoint.ipynb <span style='color:#111;'> 14.09KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent_user.ipynb <span style='color:#111;'> 14.06KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab03_Model_Representation_Soln.ipynb <span style='color:#111;'> 13.31KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab03_Model_Representation_Soln.ipynb <span style='color:#111;'> 13.30KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularized_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 12.78KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularized_Gradient_Descent_user.ipynb <span style='color:#111;'> 12.76KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb <span style='color:#111;'> 12.42KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function.ipynb <span style='color:#111;'> 12.04KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_LogisticLoss.ipynb <span style='color:#111;'> 11.76KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Cost_Function_Soln.ipynb <span style='color:#111;'> 10.49KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent.ipynb <span style='color:#111;'> 10.43KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 10.37KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab04_Cost_function_Soln.ipynb <span style='color:#111;'> 10.20KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab04_Cost_function_Soln.ipynb <span style='color:#111;'> 9.98KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab04_Cost_function_Soln.ipynb <span style='color:#111;'> 9.98KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_LogisticLoss_Soln.ipynb <span style='color:#111;'> 9.51KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 9.00KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Regularized_Cost_Soln.ipynb <span style='color:#111;'> 8.79KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Cost_Function_Soln.ipynb <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Cost_Function_Soln.ipynb <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 8.48KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab06_Sklearn_Normal_Soln.ipynb <span style='color:#111;'> 8.44KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab06_Sklearn_Normal_Soln.ipynb <span style='color:#111;'> 8.44KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 8.28KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Regularized_Cost_Soln.ipynb <span style='color:#111;'> 8.23KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Regularized_Cost_user.ipynb <span style='color:#111;'> 8.22KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularized_Cost_Soln.ipynb <span style='color:#111;'> 8.19KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Regularized_Cost_user.ipynb <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 7.52KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary_user.ipynb <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary.ipynb <span style='color:#111;'> 7.40KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Classification_Soln.ipynb <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularized_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 6.76KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab05_Sklearn_GD_Soln.ipynb <span style='color:#111;'> 6.51KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularized_Gradient_Descent_user.ipynb <span style='color:#111;'> 6.22KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Classification_Soln.ipynb <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Sigmoid_function.ipynb <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab10_Regularized_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 5.68KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab01_Python_Jupyter_Soln.ipynb <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab01_Python_Jupyter_Soln-checkpoint.ipynb <span style='color:#111;'> 4.26KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab01_Python_Jupyter_Soln.ipynb <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab01_Python_Jupyter_Soln.ipynb <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Scikit_Learn_Soln.ipynb <span style='color:#111;'> 3.94KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Scikit_Learn_Soln.ipynb <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Overfitting_Soln.ipynb <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Scikit_Learn.ipynb <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Scikit_Learn_Soln.ipynb <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Scikit_Learn_user.ipynb <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Scikit_Learn_Soln.ipynb <span style='color:#111;'> 2.85KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Scikit_Learn_user.ipynb <span style='color:#111;'> 2.85KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Scikit_Learn_Soln.ipynb <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明