内容概要:本文主要介绍了利用Google Earth Engine(GEE)平台对2000年与2022年的土地利用/覆盖数据(LULC)进行城市化变化分析的技术流程。通过构建城市区域掩膜,计算城市扩张的净增长与总增长面积,并结合随机像素筛选方法逼近预期的净增城市面积目标。同时,区分了“无变化”、“净城市增长”和“其他变化”三类区域,并实现了可视化制图与区域统计。代码还包含用于调试的像素计数函数和面积计算函数,最终将结果导出至Google Drive。; 适合人群:具备遥感与地理信息系统(GIS)基础知识,熟悉GEE平台操作及相关JavaScript语法的科研人员或高年级本科生、研究生;有一定编程经验的环境科学、城市规划等领域从业者; 使用场景及目标:①开展长时间序列城市扩展监测与空间分析;②实现土地利用变化分类与面积统计;③支持城市可持续发展与生态环境影响评估研究; 阅读建议:此资源以实际代码为基础,建议读者结合GEE平台动手实践,理解每一步逻辑,尤其是掩膜操作、面积计算与图像合成技巧,注意参数如分辨率、区域范围的适配性调整。
2026-01-14 20:21:45 3KB Google Earth Engine 遥感影像处理
1
内容概要:本文档提供了一段用于处理Sentinel-1卫星数据的Google Earth Engine (GEE)脚本。该脚本首先定义了感兴趣区域(Unteraargletscher),并设置了日期范围为2024年8月1日至8月31日。接着,从COPERNICUS/S1_GRD数据集中筛选出符合指定条件的图像,包括位置、日期、成像模式(IW)和轨道方向(降轨)。进一步筛选出同时包含VV和VH极化通道的图像,并统计符合条件的图像数量。最后,对VH通道的数据进行了最小值、平均值、最大值、中位数和首张图像的合成处理,并将结果可视化显示在地图上。 适合人群:具备一定遥感数据处理和编程基础的研究人员或工程师,尤其是对Sentinel-1数据和Google Earth Engine平台感兴趣的用户。 使用场景及目标:①筛选特定时间段和地理位置的Sentinel-1图像;②提取并处理VV和VH极化通道的数据;③通过不同的统计方法(如最小值、平均值等)生成合成图像并进行可视化展示。 阅读建议:在阅读此脚本时,建议读者熟悉Google Earth Engine的基本操作和Sentinel-1数据的特点,同时可以尝试修改参数(如日期范围、地理位置等)来探索不同条件下的数据变化。
1
内容概要:本文是一段用于Google Earth Engine(GEE)平台的JavaScript代码脚本,主要实现了对研究区域(AOI)内2024年Landsat 8卫星影像的获取、预处理与分析。首先定义了一个地理范围矩形区域,随后加载了Landsat 8地表反射率数据集,并按空间范围、时间范围和云覆盖率进行筛选。接着通过自定义函数对影像应用缩放因子校正,生成中值合成影像并裁剪到研究区。在此基础上,计算归一化植被指数(NDVI)和归一化水体指数(NDWI),并对结果进行二值分类:NDVI ≥ 0.2 判定为植被,NDWI > 0.3 判定为水体。最后将原始影像、NDVI、NDWI及其分类掩膜可视化展示在地图上。; 适合人群:具备遥感基础知识和一定GEE平台操作经验的科研人员或学生,熟悉JavaScript语法者更佳;适用于地理信息、环境监测、生态评估等领域从业者。; 使用场景及目标:①实现遥感影像自动批量处理与指数计算;②开展植被覆盖与水体分布的快速提取与制图;③支持土地利用分析、生态环境变化监测等应用研究; 阅读建议:建议结合GEE平台实际运行该脚本,理解每一步的数据处理逻辑,可调整参数(如阈值、时间范围)以适应不同区域和研究需求,并扩展至多时相分析。
2026-01-06 11:32:32 3KB Google Earth Engine JavaScript
1
内容概要:本文档提供了Landsat-7 SLC-off影像空隙填充算法的实现代码。SLC-off是Landsat-7卫星扫描仪的一个故障,导致成像时出现条带状的缺失数据。该算法基于美国地质调查局(USGS)的L7 Phase-2空隙填充协议,使用Google Earth Engine (GEE) 平台进行实现。代码首先定义了一些参数,如最小和最大缩放比例、最少邻近像素数量等。接着,通过定义`GapFill`函数来实现主要的空隙填充逻辑。该函数接收源影像和填充影像作为输入,并利用核函数计算两个影像之间的共同区域,再通过线性回归计算缩放因子和偏移量,对无效区域进行处理,最后应用缩放和偏移并更新掩膜,完成空隙填充。此外,还展示了如何使用该函数对两幅具体的Landsat-7影像进行处理,并将结果可视化显示。; 适合人群:对遥感影像处理有一定了解的研究人员或开发者,特别是那些熟悉Google Earth Engine平台及其JavaScript API的人群。; 使用场景及目标:①适用于需要处理Landsat-7 SLC-off影像的研究或项目;②帮助用户理解如何在GEE平台上实现影像空隙填充算法;③为用户提供一个可复用的代码示例,以便根据具体需求调整参数或扩展功能。; 阅读建议:读者应先熟悉Landsat-7 SLC-off现象及其对影像质量的影响,以及GEE平台的基本操作。在阅读代码时,重点关注`GapFill`函数内部的工作流程,特别是如何通过线性回归计算缩放因子和偏移量,以及如何处理无效区域。同时,可以通过修改输入影像和参数值来探索不同情况下的空隙填充效果。
2025-12-13 23:03:34 4KB 遥感影像处理 Landsat Google Earth
1
内容概要:本文详细介绍了利用Google Earth Engine (GEE) 平台进行遥感数据分析的完整流程。首先,定义了研究的时间范围(2024年全年)和感兴趣区域(AOI),并设置了一个云掩膜函数来去除影像中的云和云阴影干扰。接着,从Landsat 8卫星影像集中筛选符合条件的影像,并对每个影像进行了预处理,包括计算归一化植被指数(NDVI)和地表温度(LST)。然后,通过线性回归方法确定了NDVI与LST之间的关系,进而计算了土壤湿度指数(TVDI)。最后,对样本点进行了统计分析,绘制了散点图,并计算了皮尔逊相关系数,同时将结果导出为CSV文件。 适合人群:具有遥感数据处理基础知识,特别是熟悉Google Earth Engine平台操作的研究人员或工程师。 使用场景及目标:①学习如何在GEE平台上处理Landsat 8影像;②掌握云掩膜技术的应用;③理解NDVI和LST的计算方法及其相互关系;④探索TVDI作为干旱监测指标的有效性;⑤了解如何进行数据可视化和统计分析。 阅读建议:由于涉及到多个步骤和技术细节,建议读者按照文中提供的代码顺序逐步执行,并尝试调整参数以观察不同设置下的效果变化。此外,对于不熟悉的地理信息系统概念或术语,可以通过查阅相关资料加深理解。
2025-12-06 20:35:53 3KB 遥感数据处理 JavaScript Earth
1
本文详细介绍了基于Google Earth Engine(GEE)平台的地表温度单通道算法反演方法。文章以北京市中心为研究区域,利用Landsat 8卫星数据,从数据加载、预处理到地表温度(LST)反演与结果导出的完整流程进行了分步骤解析。核心内容包括研究区域与时间范围定义、Landsat 8数据加载与预处理、NDVI计算、植被覆盖度(FVC)与地表比辐射率计算、亮度温度(BT)计算、地表温度反演(单通道算法)以及结果导出。此外,文章还提供了关键注意事项与优化方向,如数据质量控制、参数优化建议和结果验证方法。该代码流程清晰,可重复性强,适用于学术研究和城市规划等场景。 基于Google Earth Engine(GEE)平台的地表温度反演方法是当前遥感领域的一个重要研究方向。本文详细介绍了地表温度单通道算法反演的完整流程,以北京市中心为研究区域,使用Landsat 8卫星数据作为主要数据源。 研究区域与时间范围的定义是地表温度反演的第一步。在这个过程中,我们需要明确研究的目标区域和时间范围,以便于后续的数据处理和分析。 Landsat 8数据的加载与预处理是地表温度反演的关键步骤。Landsat 8是美国地质调查局和美国宇航局联合开发的地球观测卫星,其携带的传感器可以提供丰富的地表信息。在这个过程中,我们需要对Landsat 8的数据进行加载,包括下载和读取数据。预处理主要包括数据裁剪、去云等步骤,以提高数据的质量。 接下来,NDVI的计算是地表温度反演的重要部分。NDVI(归一化植被指数)是反映地表植被覆盖程度的一个重要指标,其计算需要使用到遥感数据的红光波段和近红外波段。 然后,植被覆盖度(FVC)与地表比辐射率的计算也是地表温度反演的关键步骤。植被覆盖度是反映地表植被覆盖程度的另一个重要指标,其计算需要使用到NDVI。地表比辐射率是反映地表辐射特性的参数,其计算需要使用到植被覆盖度。 亮度温度(BT)的计算是地表温度反演的另一个重要部分。亮度温度是反映地表辐射温度的参数,其计算需要使用到遥感数据的热红外波段。 地表温度反演是基于单通道算法进行的。单通道算法是一种常用的地表温度反演算法,其主要思想是利用遥感数据的热红外波段进行地表温度反演。 在整个地表温度反演过程中,我们还需要注意一些关键事项,如数据质量控制、参数优化建议和结果验证方法。数据质量控制是保证地表温度反演结果准确性的前提,参数优化建议是为了提高地表温度反演的精度,结果验证方法是为了验证地表温度反演结果的准确性。 本文介绍的地表温度反演方法具有流程清晰、可重复性强的特点,适用于学术研究和城市规划等场景。通过使用本文介绍的地表温度反演方法,我们可以获取到高精度的地表温度数据,为城市热岛效应的研究、城市规划和环境保护等提供重要的数据支持。
2025-12-06 20:11:23 6KB Google Earth Engine
1
本文详细介绍了如何利用Google Earth Engine (GEE)平台批量下载Landsat8地表温度(LST)数据的方法。文章首先阐述了地表温度的重要性及其在气候、生态等领域的应用价值,随后提供了完整的代码框架和分步骤详细解析,包括感兴趣区域(ROI)导入与地图配置、Landsat8影像掩膜与定标函数定义、时间范围设置以及逐月影像合成、LST计算与批量导出等核心步骤。代码实现了对指定区域2024年逐月Landsat8卫星数据的筛选、云去除、辐射定标、地表温度计算与批量导出,适用于生态、气候等领域的时空动态分析。文章还提供了代码关键注意事项和运行结果,帮助读者更好地理解和应用该方法。 地表温度(LST)是研究地球表面热能流动与气候相互作用的重要参数。获取准确的LST数据对于分析气候模式、评估生态环境变化以及支持农业生产等方面具有极其重要的意义。Landsat 8 卫星作为美国地质调查局(USGS)和NASA联合发射的一颗地球观测卫星,能够提供覆盖全球范围的高清多光谱数据,是获取LST数据的重要来源。 Google Earth Engine(GEE)是一个强大的云平台,提供了海量地球科学数据的存储和分析能力。GEE平台支持各种类型的地球科学数据,包括Landsat系列卫星数据,且其内置的API功能允许用户直接在云端处理和分析这些数据。利用GEE平台,可以非常便捷地进行批量数据处理和下载,大大降低了进行大规模遥感分析的门槛。 在利用GEE平台下载Landsat8 LST数据时,首先需要定义感兴趣区域(ROI),即确定需要分析和下载数据的地理位置。接下来,根据Landsat8卫星的特性,需要设定时间范围,确定分析的时间跨度。此外,对于Landsat8影像的处理,需要进行影像的掩膜处理,以剔除云层和云影的影响。为了确保数据的准确性,还需要对影像进行辐射定标。 辐射定标之后,可以计算地表温度。Landsat8提供的是光谱数据,需将光谱数据转换为温度数据,此过程涉及到复杂的物理模型和算法。当LST计算完成后,还需要通过逐月影像合成的方式整合数据,从而形成一系列时间序列数据集,这对于研究地表温度随时间的变化趋势非常重要。 文章中提到的可运行源码,实际上是一个程序化的解决方案,不仅提供了核心步骤的代码框架,还详细解析了每一步的操作。代码中可能包含有自动筛选数据、云量剔除、辐射定标、温度计算以及最终数据导出等功能。这些代码示例和说明,可以帮助读者更加直观地理解如何使用GEE进行遥感数据处理,同时,也便于读者根据自身需求调整和优化代码。 由于Landsat8影像数据量庞大,逐个下载和处理这些数据将耗费大量的时间和精力。GEE平台的优势在于其强大的数据处理能力和并行计算能力,能够快速响应用户的分析需求,实现批量处理和下载。因此,这种方法特别适合进行大规模、长时间序列的遥感数据分析,对于生态学、气候学等领域的研究具有很高的应用价值。 值得注意的是,在运行相关代码时,用户需要注意代码中的一些关键事项,如版本兼容性、API的调用限制等,以避免运行时发生错误。此外,文章还可能提供了运行结果的截图或数据,帮助读者验证代码的运行效果,并指导读者如何解读和应用下载的数据。 文章提供的信息和代码示例,将大大促进遥感科学领域研究者的工作效率,特别是在进行时空动态分析时,这些数据和方法将提供强有力的技术支持。对于那些缺乏专业编程背景的研究人员来说,本文所提供的详细教程和完整代码,无疑为他们提供了一种易于上手和操作的解决方案。
2025-11-30 16:39:09 6KB Google Earth Engine
1
内容概要:该文档是一份基于Google Earth Engine(GEE)平台的完整遥感数据分析脚本,旨在通过多源遥感数据(Sentinel-2光学影像、Sentinel-1 SAR数据、Copernicus DEM地形数据、GEDI激光雷达生物量与树冠高度产品)估算越南嘉莱省(Gia Lai)的地上生物量(AGB)。脚本系统地实现了数据预处理、特征提取、随机森林回归模型构建与验证、生物量空间制图及总量估算,并进一步评估了各预测变量的重要性,最后将结果导出为资产和CSV报告。整个流程涵盖了从原始数据清洗、云掩膜、指数计算、投影统一、重采样到建模分析与结果可视化的全过程。; 适合人群:具备一定遥感与地理信息系统(GIS)基础,熟悉Google Earth Engine平台操作,从事生态环境、林业碳汇或定量遥感研究的科研人员或研究生。; 使用场景及目标:① 学习如何在GEE中融合多源遥感数据进行生物量反演;② 掌握机器学习(如随机森林)在遥感制图中的应用流程;③ 实现区域尺度地上生物量的空间分布制图与总量统计;④ 分析不同遥感特征对生物量估算的贡献度。; 阅读建议:此资源以实际可运行的JavaScript代码形式呈现,建议结合GEE代码编辑器逐步执行并理解每一步的数据流与参数设置,重点关注数据预处理的一致性、模型训练样本的生成方式以及结果导出路径的配置。
2025-11-12 21:19:43 39KB Google Earth Engine Remote
1
内容概要:本文档为gee scripts.txt,主要展示了利用Google Earth Engine(GEE)平台进行特定土地覆盖类型(如高盐度盐滩,即apicum类)的遥感影像处理与分类的Python脚本。首先初始化了GEE环境,接着定义了年份、类别ID和类别名称等参数。通过调用GEE中的图像和数据集,创建了监督分类图像,并对训练和测试数据集进行了导出设置,包括将分类后的图像及其元数据导出为资产,同时设置了导出的详细参数,如描述、资产ID、区域范围、分辨率(scale)、最大像素数量等。; 适合人群:熟悉Python编程语言,有一定遥感数据分析经验的研究人员或工程师,特别是那些专注于土地覆盖变化监测、环境科学研究领域的专业人士。; 使用场景及目标:①需要从GEE获取特定年份和类别的遥感影像数据并进行预处理;②构建监督分类模型,对特定类型的地表覆盖进行识别和分类;③将处理后的数据导出到GEE资产中,以便进一步分析或与其他数据集集成。; 阅读建议:此脚本适用于具有遥感背景知识的读者,在理解和修改代码前,建议先熟悉GEE平台的基本操作及Python API的使用方法,同时关注脚本中关键变量(如year、classID)的定义及其对后续处理步骤的影响。
2025-09-23 22:10:38 1KB Earth Engine Python GIS
1
内容概要:本文详细介绍了利用Google Earth Engine (GEE) 进行Sentinel-2卫星数据处理与分类的全流程。首先,通过筛选特定区域(AOI)、时间范围和云覆盖度的数据,去除云层和阴影干扰,并计算云掩膜后的图像中值以提高质量。接着,对图像进行分割并选取关键波段和聚类信息,准备训练数据集,包括多种地表覆盖类型(如非正式定居点、植被、裸地、水体等)。然后,使用随机森林算法训练分类器,并对分割后的图像进行分类。此外,还进行了像素级别的分类作为对比。最后,将分类结果导出到Google Drive,并评估了模型的训练和验证精度。 适合人群:遥感数据分析人员、地理信息系统(GIS)从业者以及对地球观测数据处理感兴趣的科研人员和技术爱好者。 使用场景及目标:①掌握Sentinel-2数据的预处理方法,如去云、降噪等;②学习基于GEE平台的地物分类流程,包括样本准备、模型训练、结果评估等;③理解不同级别(对象级与像素级)分类的区别及其应用场景。 其他说明:本教程侧重于实际操作步骤,提供了完整的Python代码示例,帮助读者快速上手GEE平台上的遥感影像处理任务。同时,通过比较对象级和像素级分类的效果,可以更好地选择合适的分类方法。
1