【遥感影像处理】基于Google Earth Engine的Landsat 8数据处理:温度植被干旱指数(TVDI)计算与分析系统设计

上传者: 31988139 | 上传时间: 2025-12-06 20:35:53 | 文件大小: 3KB | 文件类型: TXT
内容概要:本文详细介绍了利用Google Earth Engine (GEE) 平台进行遥感数据分析的完整流程。首先,定义了研究的时间范围(2024年全年)和感兴趣区域(AOI),并设置了一个云掩膜函数来去除影像中的云和云阴影干扰。接着,从Landsat 8卫星影像集中筛选符合条件的影像,并对每个影像进行了预处理,包括计算归一化植被指数(NDVI)和地表温度(LST)。然后,通过线性回归方法确定了NDVI与LST之间的关系,进而计算了土壤湿度指数(TVDI)。最后,对样本点进行了统计分析,绘制了散点图,并计算了皮尔逊相关系数,同时将结果导出为CSV文件。 适合人群:具有遥感数据处理基础知识,特别是熟悉Google Earth Engine平台操作的研究人员或工程师。 使用场景及目标:①学习如何在GEE平台上处理Landsat 8影像;②掌握云掩膜技术的应用;③理解NDVI和LST的计算方法及其相互关系;④探索TVDI作为干旱监测指标的有效性;⑤了解如何进行数据可视化和统计分析。 阅读建议:由于涉及到多个步骤和技术细节,建议读者按照文中提供的代码顺序逐步执行,并尝试调整参数以观察不同设置下的效果变化。此外,对于不熟悉的地理信息系统概念或术语,可以通过查阅相关资料加深理解。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明