deep learning 中文版 ,带书签
2025-07-26 23:04:11 30.63MB 深度学习
1
深度学习(Deep Learning)是人工智能领域的一个重要分支,它主要关注如何通过计算机模拟人脑神经网络的方式进行学习和预测。这个压缩包包含了两份关于深度学习的重要资源:一本是中文版的《深度学习》(Deep Learning 中文版 2017.3.15.pdf),另一本是英文原版的《deep learning.pdf》。这两本书籍都是由深度学习领域的先驱者,包括Yoshua Bengio、Ian Goodfellow和Aaron Courville等人编著的。 1. **神经网络基础**:深度学习的核心是神经网络,它是由许多个处理单元(神经元)按照一定层次结构组成的计算模型。这些神经元通过权重连接,形成多层的网络结构,每一层对输入数据进行一次转换,逐层提取特征。 2. **反向传播算法**:在训练神经网络时,反向传播算法是关键。它通过计算损失函数相对于每个参数的梯度,来更新网络中的权重,以最小化预测结果与真实值之间的误差。 3. **卷积神经网络(CNN)**:在图像识别和计算机视觉任务中,卷积神经网络表现出色。CNN利用卷积层提取图像特征,并通过池化层降低数据维度,实现高效处理。 4. **循环神经网络(RNN)**:对于序列数据如文本和语音,循环神经网络可以捕获时间依赖性。RNN的特点在于其具有记忆单元,允许信息在时间步之间流动。 5. **长短时记忆网络(LSTM)**:为了解决标准RNN在处理长序列时的梯度消失问题,提出了LSTM,它增加了门控机制,能更好地保持和遗忘长期依赖信息。 6. **生成对抗网络(GAN)**:GAN是深度学习中的创新应用,由生成器和判别器两部分组成,通过对抗性训练,可以生成逼真的新样本。 7. **深度强化学习(DRL)**:将深度学习与强化学习结合,使智能体能够通过与环境交互学习最优策略,例如在AlphaGo中击败世界围棋冠军。 8. **深度学习框架**:实现深度学习通常需要借助如TensorFlow、PyTorch或Keras等开源框架。这些框架提供了高级API,简化了模型构建和训练过程。 9. **模型优化**:深度学习模型的优化涉及超参数调整、正则化、批量归一化、学习率调度等方法,以提高模型的泛化能力和训练速度。 10. **分布式训练**:对于大规模数据集和复杂模型,分布式训练是必要的。通过多GPU或多节点并行计算,可以加速训练过程。 这两本书不仅介绍了深度学习的基本概念,还涵盖了最新的研究进展和技术应用,是初学者和专业人士深入理解深度学习的宝贵资源。阅读过程中,读者可以通过对照中文版和英文版,加深对理论的理解,同时提升英文阅读能力。
2025-07-26 23:01:27 85.9MB deep learnin
1
用于人类活动识别的深度学习(和机器学习) CNN,DeepConvLSTM,SDAE和LightGBM的Keras实施,用于基于传感器的人类活动识别(HAR)。 该存储库包含卷积神经网络(CNN)[1],深度卷积LSTM(DeepConvLSTM)[1],堆叠降噪自动编码器(SDAE)[2]和用于人类活动识别(HAR)的Light GBM的keras(tensorflow.keras)实现。 )使用智能手机传感器数据集, UCI智能手机[3]。 表1.在UCI智能手机数据集上的五种方法之间的结果摘要。 方法 准确性 精确 记起 F1分数 轻型GBM 96.33 96.58 96.37 96.43 CNN [1] 95.29 95.46 95.50 95.47 DeepConvLSTM [1] 95.66 95.71 95.84 95.72 SDAE [
2025-07-15 10:34:57 1.84MB machine-learning deep-learning keras lightgbm
1
PixelAnnotation工具 Linux/MAC Windows Donate 该软件可让您手动和快速注释目录中的图像。 该方法是伪手动方法,因为它使用为OpenCV算法。 总体思路是手动为标记提供画笔,然后启动算法。 如果首先需要分割,则用户可以通过在错误区域上绘制新标记来细化标记(如以下视频所示)。 范例: 来自用户( )的小例子: : v tX-xcg5wY4U 建立依赖关系: > = 5.x > = 2.8.x > = 2.4.x 对于Windows编译器:在Visual Studio> = 2015下工作 如何建造去 下载二进制文件: 转到发布
2025-07-09 22:01:09 21.03MB opencv computer-vision deep-learning annotation
1
This is the readme for applying deep learning for joint channel estimation and detection in OFDM system. 只是其中一部分,另一部分,分开上传,因为太大le The codes have been tested on Ubuntu 16.04 + tensorflow 1.1 + Python 2.7 Dependences: 1. Tensorflow 2. Winner Channel Model Get Start: cd ./DNN_Detection python Example.py
2025-06-19 18:16:59 27KB deep learnin python ofdm
1
grokking deep learning Andrew.W.Trask 2019 Grokking Deep Learning was written to help give you a foundation in deep learning so that you can master a major deep learning framework. It begins by focusing on the basics of neural networks and then switches its focus to provide an in-depth look at advanced layers and architectures
2025-06-03 10:37:18 13.59MB 深度学习
1
### 深度学习概述与基础知识 #### 一、引言 《深入探索深度学习》是一本详尽介绍深度学习理论与实践的书籍,由Aston Zhang、Zachary C. Lipton、Mu Li 和 Alexander J. Smola共同编写。本书旨在为读者提供一个系统的学习框架,涵盖从基础数学概念到复杂神经网络模型的各个方面。 #### 二、深度学习的动机 本书开篇通过一个动机性的例子来阐述深度学习的重要性及其在实际问题中的应用潜力。这个例子可能是关于图像识别或自然语言处理的应用案例,旨在展示深度学习模型如何能够自动地从原始数据中学习特征,并解决传统方法难以解决的问题。 #### 三、深度学习的关键组成部分 接下来介绍了构建深度学习系统的几个核心要素: - **数据获取**:包括数据的收集、清洗以及预处理等步骤。 - **模型定义**:涉及到选择合适的网络结构(如卷积神经网络、循环神经网络等)以及损失函数。 - **优化算法**:用于最小化损失函数,从而使模型能够更好地拟合训练数据。 - **评估指标**:用以衡量模型性能的标准,例如准确率、精确率、召回率等。 #### 四、不同类型的机器学习问题 本节探讨了监督学习、非监督学习、半监督学习和强化学习等不同类型的机器学习任务,强调了每种类型的特点及其应用场景。这些分类有助于理解深度学习技术如何被应用于各种实际问题中。 #### 五、深度学习的历史背景 回顾了机器学习领域的发展历程,特别是深度学习技术是如何从最初的神经网络模型逐步演进到今天的复杂结构。通过对历史的梳理,可以更好地理解当前技术的优势与局限性。 #### 六、深度学习的成功案例 列举了一些深度学习领域的成功案例,比如图像识别、语音识别、自然语言处理等领域取得的重大突破。这些案例展示了深度学习技术的实际应用效果及其对未来技术进步的影响。 #### 七、深度学习的特点 分析了深度学习与其他机器学习方法相比的独特之处,包括但不限于: - **自动化特征提取**:深度学习模型能够自动地从原始数据中提取有用的特征,减少了人工设计特征的需求。 - **大规模数据处理能力**:深度学习特别适用于处理大规模的数据集。 - **模型复杂度**:现代深度学习模型通常具有较高的复杂度,这使得它们能够在复杂的任务上表现优异。 #### 八、预备知识 这部分内容是本书的基础部分,主要包括以下方面: - **数据操作**:介绍如何加载、处理和操作数据集,包括常见的数据格式转换、索引切片等。 - **数据预处理**:涉及数据清洗、缺失值处理以及数据标准化等步骤。 - **线性代数**:涵盖了标量、向量、矩阵和张量的概念及其运算规则。 - **微积分**:讨论了导数、偏导数、梯度和链式法则等基本概念。 - **概率论**:介绍了概率的基本理论、随机变量的处理以及期望与方差等相关概念。 - **自动微分**:解释了自动求导的原理及其在深度学习中的应用。 #### 九、线性神经网络 本书进入更具体的技术细节,首先介绍线性回归模型,包括其基本元素、矢量化加速技巧、正态分布下的平方损失函数以及从线性回归过渡到深度网络的方法。此外,还提供了从零开始实现线性回归模型的具体步骤,包括数据生成、模型初始化、定义模型结构、损失函数的选择、优化算法的配置等。 通过上述内容的介绍,《深入探索深度学习》不仅为读者提供了全面而深入的理论知识,还提供了丰富的实践经验,对于想要深入了解并掌握深度学习技术的人来说是一本不可多得的好书。
2025-05-23 10:02:21 25.06MB 深度学习
1
什么 这是在Unity应用程序中使用经过TensorFlow或ONNX训练的模型进行图像分类和对象检测的示例。 它使用-请注意,梭子鱼仍处于开发预览阶段,并且经常更改。 在我的更多详细信息。 分类结果: 检测结果: 如果您正在寻找类似的示例,但使用TensorflowSharp插件而不是梭子鱼,请参阅我 。 怎么样 您需要Unity 2019.3或更高版本。 2019.2.x版本似乎在WebCamTexture和Vulkan中存在一个错误,导致内存泄漏。 在Unity中打开项目。 从Window -> Package Maanger安装Barracuda 0.4.0-preview
2025-05-16 15:45:26 147.01MB deep-learning unity tensorflow image-classification
1
深度学习是人工智能领域的一个重要分支,它模仿人脑的工作机制,通过构建多层神经网络来学习数据的复杂表示。这份“深度学习PPT”涵盖了深度学习的基础知识、发展历程、主要模型,以及对未来发展的展望,旨在为对这个领域感兴趣的人提供一个全面的了解。 一、深度学习简介 深度学习的核心思想是利用多层次的非线性变换,提取输入数据的高级特征。与传统的浅层学习相比,深度学习能够处理更复杂的模式识别任务,如图像分类、语音识别和自然语言处理。它的崛起得益于大数据的爆发和计算能力的提升,使得训练大规模神经网络成为可能。 二、深度学习发展 深度学习的发展可以追溯到20世纪80年代的多层感知机(MLP),但由于过拟合和计算资源限制,进展缓慢。直到2006年,Hinton等人提出的深度信念网络(DBN)和反向传播算法的改进,开启了深度学习的新篇章。随后,AlexNet在2012年的ImageNet竞赛中大获成功,证明了深度学习在图像识别上的优越性,引发了深度学习的热潮。 三、卷积神经网络(CNN) CNN是深度学习在图像处理中的主要工具,其核心特性包括卷积层、池化层和全连接层。卷积层通过共享权重的滤波器对输入图像进行特征提取,池化层则用于降低维度,保持模型的不变性。在图像识别、目标检测和图像生成等领域,CNN的应用广泛且效果显著。 四、循环神经网络(RNN) RNN是处理序列数据的利器,尤其适用于自然语言处理任务。其结构允许信息在时间轴上流动,解决了传统神经网络无法处理序列依赖的问题。长短期记忆网络(LSTM)和门控循环单元(GRU)是对RNN的改进,解决了梯度消失问题,增强了模型对长期依赖的捕捉能力。 五、深度学习的未来发展趋势 1. 自动化机器学习(AutoML):自动设计和优化深度学习模型,减少人工干预。 2. 强化学习:结合深度学习,使AI在环境中自我学习,实现智能决策。 3. 联邦学习:在保护用户隐私的同时进行模型训练,解决数据集中化的问题。 4. 量子计算与深度学习:探索量子计算对深度学习性能的提升可能性。 5. 无监督学习与半监督学习:减少对大量标注数据的依赖,提高模型泛化能力。 这份深度学习PPT详细讲解了这些概念,是初学者入门和专业人士回顾的宝贵资源。通过深入理解并实践其中的内容,你将能更好地掌握深度学习这一强大的技术,并可能开启你在AI领域的无限可能。
2025-05-16 09:39:21 38.41MB Deep Learning
1
dcase2020_task2_baseline 这是DCASE 2020挑战任务2“用于机器状态监视的异常声音的无监督检测”的基准系统。 描述 基准系统包含两个主要脚本: 00_train.py 该脚本通过使用目录dev_data / / train /或eval_data / / train /来训练每种机器类型的模型。 01_test.py 此脚本在目录dev_data / / test /或eval_data / / test /中,为每个计算机ID生成csv文件,包括每个wav文件的异常分数。 csv文件将存储在目录result /中。 如果模式为“开发”,则还将为每个计算机ID制作包括AUC和pAUC的csv文件。 用法 1.克隆存储库 从Gi
1